
Institute of Neural Information Processing | Ulm University

INSTANCE-BASED LEARNING
Dr. Sebastian Gottwald

1

MOTIVATION

3

BASIC IDEA

Given: Data of patterns and targets .

Goal: Predict the target of a new pattern .

Need additional structure to compare to the known information:

Parametrized models use a loss function defined on to compare outputs during
training (and use the error to adapt the model parameters, e.g. gradient-descent).

(most) instance-based models use a kernel function defined on to compare inputs

Note: Here, a kernel is a non-negative function that is used to measure
similarity of and , but o�en kernels are required to satisfy additional constraints such as positive definiteness or
symmetry (we will see this later).

 = {(,)xi yi }N
i=1

∈ xi ∈ yi

y x ∈ 

x





k :  ×  → , (x,) ↦ k(x,)ℝ+ x′ x′

x x′

4

EXAMPLE 1: KERNEL REGRESSION (NADARAYA-WATSON MODEL)
See for details.

Consider dataset as a sample from a joint distribution .

Approximate the joint density by .

Define the regression function to be .

A short calculation shows that

Note: and , i.e. can be viewed as a probability distribution
over the patterns , favoring those that are considered "similar" to , and thus is the average of wrt. .

notes

 = {(,)xn yn }N
n=1

ℙ(X, Y)

 p(x, y) := f (x −)g(y −)1
N

∑N
n=1 xn yn

y(x) := [Y]𝔼p(Y|X=x)

y(x) = = ⋯ = = (x,)
∫ y p(x, y)dy

∫ p(x, y)dy ∑
n

yn

f (x −)xn

f (x −)∑m xm
  

=: (x,)kD xn

∑
n

ynkD xn

(x,) ∈ [0, 1]kD xn (x,) = 1∑
n

kD xn q(n) := (x,)kD xn

xn xn x y(x) yn q

5

https://gttwld.de/ls2/slides/pdfs/LS2_InstanceBasedLearning_Nadaraya-Watson.pdf

INNER PRODUCT KERNELS

If a kernel can be written as an inner product on some space , a so-called feature space,
in the sense that

for some mapping , a so-called feature map, then is called an inner product
kernel (o�en the prefix inner product is dropped!).

The image of a pattern under is then called a feature vector, and its
components are called features.

k 

k(x,) = ⟨ϕ(x), ϕ()x′ x′ ⟩

ϕ :  →  k

ϕ(x) ∈  x ϕ

6

WHY USE INNER PRODUCTS?

Inner products can serve as similarity measures in vector spaces: For , we have

where is the angle between and .

If , then is maximal if , i.e. if and
point in the same direction.

Hence, is a good similarity measure, if the length (or magnitude) of the vectors are
not informative.

E.g. when the vectors are normalized in some way, so that only the proportions between
the features are relevent, not their total value.

Or when having decision hyperplanes through the origin, so that only the angle is used as
a criterion.

Note: The angle between two vectors can also be defined in arbitrary/infinite dimensional inner product spaces by
the above equality (due to the Cauchy-Schwarz inequality, c.f. next section).

x, ∈x′ ℝd

⟨x, ⟩ = ‖x‖ ‖ ‖ cos ϕ(x,)x′ x′ x′

ϕ(x,)x′ x x′

‖x‖ = ‖ ‖ = 1x′ ⟨x, ⟩ ∈ [−1, 1]x′ cos ϕ(x,) = 1x′ x x′

⟨x, ⟩x′

7

WHY USE FEATURE MAPS?

If is a set without vector space structure (e.g. words), then a feature map embeds
into an inner product space, where the inner product allows to measure similarity.

Even if is already a vector space with an inner product, it might not measure the right
notion of similarity for a given problem.

 ϕ 



WHY USE INNER PRODUCT KERNELS?
The features might live in a very high (maybe even infinite) dimensional space, but the
kernel could have a closed form that does not require the explicit calculation of the features.

RULE OF THUMB: FEATURE MAPS VS KERNELS
Kernels have an advantage when the feature space is high dimensional

Feature maps are better if the number of samples is very large

8

SOME FEATURE MAPS AND THEIR KERNELS

Feature map Kernel

The converse: How do we know that a kernel, e.g. , is an inner product
kernel (i.e. can be written as an inner product of and for some)?

Answer: Hilbert space theory (next section).

⇒

ϕ : → , x ↦ xℝd ℝd k(x,) = ⟨x,x′ x′⟩ℝd = x
T

x
′

ϕ : → , x ↦ (ℝd ℝd 2

xixj)
d
i,j=1

k(x,) = (⟨x,x′ x′⟩ℝd)
2

ϕ : {0, 1, 2} → [0, 1], x ↦ p(x) k(x,) = p(x)p()x′ x′

ϕ : → (Ω), A ↦ −P(A)2Ω L∞
𝟙A k(A, B) = P(A ∩ B) − P(A)P(B)

 f (x,) =x′ e−||x− |x′ |2

ϕ(x) ϕ()x′ ϕ

9

REPRODUCING KERNEL HILBERT SPACES

11

VECTOR SPACES

A vector space (or linear space) consists of elements (called vectors) that can be added (
, if) and multiplied by scalars (if ,). Examples

include

Euclidean spaces : , where (elementwise)

Sequence spaces: (elementwise),
e.g. bounded sequences , summable sequences , square-summable sequences

.

Function spaces: (pointwise),
e.g. continuous functions on an interval , continuously differentiable
functions , square integrable functions on ,

Note: For the purpose of this lecture, we assume that consists of functions. Rigorously, one has to consider
equivalence classes of functions that are equal almost everywhere, which means that are considered
the same even if on a set of measure (has measure if , e.g.).

V v

v + w ∈ V v, w ∈ V αv ∈ V α ∈ ℝ v ∈ V

ℝd αx + y ∈ ℝd (αx + y := α +)i xi yi

α(+ (:= (α +xn)n yn)n xn yn)n

ℓ∞ ℓ1

, …ℓ2

(αf + g)(x) := αf (x) + g(x)

C([a, b]) [a, b]

((a, b))C1 (ℝ)L2 ℝ …

(ℝ)L2

f , g ∈ (ℝ)L2

f (x) ≠ g(x) 0 A ⊂ ℝ 0 dx = 0∫
A

A = {x} ∀x ∈ ℝ

12

INNER PRODUCT SPACES

An inner product space is a vector space together with an inner product , which (in the
real case) is a function that is symmetric, linear in both entries, and
positive definite (if).

Examples:

Euclidean spaces , where for .

Sequence spaces, e.g. , where for .

Function spaces, e.g. , where .

V ⟨⋅, ⋅⟩
⟨⋅, ⋅⟩ : V × V → ℝ

⟨x, x⟩ > 0 x ≠ 0

(, ⟨⋅, ⋅)ℝd ⟩ℝd ⟨x, y =⟩ℝd ∑d
i=1 xiyi x, y ∈ ℝd

(, ⟨⋅, ⋅)ℓ2 ⟩ℓ2 ⟨x, y =⟩ℓ2 ∑∞
i=1 xiyi x, y ∈ ℓ2

((ℝ), ⟨⋅, ⋅)L2 ⟩L2 ⟨f , g = f (x)g(x) dx⟩L2 ∫
ℝ

13

INDUCED NORM

An inner product space is an example of a normed space with norm for
all . A norm measures the length of a vector , and therefore introduces a notion of
distance into by (a so-called metric), which, in turn, implies a notion
of convergence (a topology).

Examples of norms that are induced by inner products:

Euclidean norm: for (analogous for)

Function norm in : for .

Examples of norms that do not come from inner products:

 and norms for : ,

the supremum norms and .

V ‖v‖ = ⟨v, v⟩‾ ‾‾‾‾√
v ∈ V v

V d(v, w) = ‖v − w‖

 ‖x‖ = =∑d
i=1 x2

i
‾ ‾‾‾‾‾‾√ ⟨x, x⟩

ℝd‾ ‾‾‾‾‾‾√ x ∈ ℝd ℓ2

L2 ‖f ‖ = = ⟨f , f∫ |f (x) dx|2‾ ‾‾‾‾‾‾‾‾‾√ ⟩L2 f ∈ (ℝ)L2

ℓp Lp p ≠ 2 ‖x =‖p (|)∑i xi|
p 1/p

‖f =‖p (∫ |f (x) dx)|p 1/p

‖x = | |‖∞ supi xi ‖f = |f (x)|‖∞ supx

14

CAUCHY-SCHWARZ INEQUALITY

Theorem: For all elements of an inner product space , we have

In , this can be seen as a consequence of . In fact, it justifies the
definition of an angle between elements of arbitrary inner product spaces.

It implies the triangle inequality, , in any inner product space
(see exercises).

It is very useful to show implications like (see exercises), which is
why it appears all over Analysis.

v, w ∈ V V

|⟨v, w⟩| ≤ ‖v‖‖w‖.

ℝd ⟨x, y⟩ = ‖x‖‖y‖ cos θ

‖v + w‖ ≤ ‖v‖ + ‖w‖

x, y ∈ ⇒ xy ∈ℓ2 ℓ1

15

HILBERT SPACES

A Hilbert space is an inner product space with the additional property that all sequences
 in whose elements are eventually arbitrarily close to each other (so-called Cauchy

sequences) do converge to elements in . Normed spaces with this property are known as
being complete. Examples:

Hilbert Spaces: The inner product spaces from the previous slides (, ,)

Non-complete inner product spaces: Rational numbers (equipped with product of
numbers), equipped with .

Note: Any (non-complete) inner product space can be uniquely completed to a Hilbert space by simply including all
limits of Cauchy sequences as elements of the space, e.g. the completion of is , the completion of

 is .



(xn)n 



ℝd ℓ2 L2

ℚ
C([a, b]) ⟨⋅, ⋅⟩ ([a,b])L2

ℚ ℝ

(C([a, b]), ⟨⋅, ⋅)⟩L2 ([a, b])L2

16

DUAL SPACES

The (topological) dual of a (topological) space consists of all continuous linear maps
(so-called functionals) . Examples:

1. Inner product by a fixed vector , i.e. with .

2. Summation on against a fixed bounded sequence (s.th.), i.e.
 with .

3. Integration on against a fixed function , i.e. with
.

Note: 1. and 3. are examples of the general fact that, in any Hilbert space , the inner product against a fixed
element , i.e. , defines a continuous linear functional (exercise).

X∗ X

ϕ : X → ℝ

a ∈ ℝn ϕ : → ℝℝn ϕ(x) = ⟨a, x⟩ℝn

ℓ1 (yn)n ∃C | | ≤ Cyn ∀n

ϕ : → ℝℓ1 ϕ(x) = ∑n ynxn

(ℝ)L2 g ∈ (ℝ)L2 ϕ : (ℝ) → ℝL2

ϕ(f) := g(x)f (x) dx∫
ℝ



y ∈  ϕ(x) = ⟨y, x⟩ ϕ ∈ 
∗

17

RIESZ REPRESENTATION THEOREM

The following theorem shows that the dual of a Hilbert space can be identified with
the Hilbert space itself.

Theorem (Riesz): For every continuous linear functional , there exists a unique
element such that

Since, the converse is also true (see comment on the previous slide), the mappings
and are inverses of each other and allow to identify with .

Note: For the rigorous identification of and one also has to think of how the distance measure given by the
inner product transforms under the bijection (we are not doing this here).

∗ 

ϕ :  → ℝ
∈ gϕ

ϕ(f) = ⟨ , f ⟩ ∀f ∈ gϕ

ϕ ↦ gϕ

g ↦ ⟨g, ⋅⟩ ∗ 

 
∗

⟨⋅, ⋅⟩

18

EXAMPLE: EVALUATION FUNCTIONALS

For , an evaluation functional on a Hilbert space of functions
 is defined by

 is always linear by definition:

 is not necessarily continuous, e.g. in , even if , the value can
be arbitrarily far away from for any (has measure).

In , evaluation functionals map vectors to single entries . Thus,

in particular, is continuous, and the element that is guaranteed to exist by the
Riesz representation theorem in this case is .

x ∈  :  → ℝδx 

f :  → ℝ

(f) := f (x).δx

δx (αf + g) = αf (x) + g(x) = α (f) + (g)δx δx δx

δx (ℝ)L2 ‖f − ‖ → 0fn (x)fn

f (x) n ∈ ℕ {x} 0

ℝd δi x xi

(x) = = = ⟨(, x⟩δi xi ∑
d

j=1
δijxj δij)

d
j=1

δi y ∈ ℝd

y = (δij)
d
j=1

19

REPRODUCING KERNEL HILBERT SPACES

Let be Hilbert space of functions such that the evaluation functionals
, are continuous, i.e. , for all . By Riesz'

representation theorem, for every there exists an element (i.e. a function)

Any function such that satisfies () is called a
reproducing kernel for , and is called a reproducing kernel Hilbert space (RKHS) if it has a
reproducing kernel (e.g. , , not).

Note: The argument leading to shows that any Hilbert space of functions with continuous evaluation
functionals () is an RKHS. The converse is also true: if has a reproducing kernel , then is
continuous, since and is continuous in both entries.

 f :  → ℝ
:  → ℝδx f ↦ f (x) ∈δx ∗ x ∈ 

x ∈ 

∈  s.th. f (x) = ⟨ , f ⟩ ∀f ∈ .kx kx (∗)

K :  ×  → ℝ (x) := K(x,)kx′ x′ ∗
 

ℝd ℓ2 L2

(∗)

∈δx 
∗

 K δx

(f) = ⟨K(⋅, y), f ⟩δx ⟨⋅, ⋅⟩

20

PROPERTIES OF REPRODUCING KERNELS

Let be a reproducing kernel for , then

1. is unique (as a reproducing kernel of).
Proof: Choose in .

2. is an inner product kernel:
Proof: Choose in .

3. is symmetric:
Proof: This directly follows from and the symmetry of inner products.

4. is positive semi-definite, i.e. defines a positive semi-definite matrix for
any finite set , i.e. .
Proof:

K 

K 

f = (⋅,) − (⋅,)K1 x′ K2 x′ ⟨ (⋅, x), f ⟩ − ⟨ (⋅, x), f ⟩ = f (x) − f (x) = 0K1 K2

K K(x,) = ⟨K(⋅, x), K(⋅,)⟩x′ x′

 f = = K(⋅,)kx′ x′ (∗)

K K(x,) = K(, x)x′ x′

2.

K := K(,)Kij xi xj

{ , … , } ⊂ x1 xn ≥ 0 ∀c ∈∑n
i,j=1 cicjKij ℝn

K(,) = ⟨ K(⋅,), K(⋅,)⟩ = ‖ K(⋅,) ≥ 0∑n

i,j=1
cicj xi xj ∑n

i=1
ci xi ∑n

j=1
cj xj ∑n

i=1
ci xi ‖2

21

NATIVE SPACES

Theorem (): A symmetric function is a reproducing kernel
for a unique Hilbert space of functions on if is positive semi-definite.

Sketch of proof:

Consider the inner product space of all finite linear
combinations with inner product

Check the reproducing property : for all .

Define as the completion of (the reproducing property still holds).

Note: Some books (,) require to be positive definite in order to get a positive definite inner
product, even though semi-definite is enough because one can show , so

 implies (see e.g. Sect. 5.2.2, or , Sect. 1.2).

Moore-Aronszajn K :  ×  → ℝ
  K

V := span{K(⋅, x) : x ∈ }

K(⋅,)∑n
i=1 αi xi

⟨ K(⋅,), K(⋅,) := K(,)∑i
αi xi ∑j

βj xj ⟩
V ∑i,j

αiβj xi xj

(∗) f (x) = ⟨K(⋅, x), f ⟩ f ∈ V

 V

Wendland Fasshauer K

|f (x) = |⟨K(⋅, x), f ⟩ ≤ K(x, x)⟨f , f|2 |2 ⟩V

⟨f , f = 0⟩V f = 0 Mohri et al. Schölkopf et al.

22

https://doi.org/10.2307/1990404
https://doi.org/10.1017/CBO9780511617539
https://doi.org/10.1142/6437
https://cs.nyu.edu/~mohri/mlbook/
https://dl.acm.org/doi/abs/10.5555/648300.755324

REPRESENTER THEOREM

Consider a supervised learning problem for given data . Let be a
loss function with respect to a model , e.g. . Consider the
regularized optimization problem

where is a strictly monotonically increasing function, e.g. , and
is some a function norm.

Theorem: If the minimization in is restricted to an RKHS with kernel and
, then each minimizer of admits a representation of the form

where is the only degree of freedom that is le�.

{(,) ⊂  × ℝxi yi }N
i=1

lf

f :  → ℝ (x, y) = (y − f (x)lf)2

 (,) + λ g(‖f ‖)min
f :→ℝ

1

N ∑
N

i=1
lf xi yi (∗∗)

g : → ℝℝ+ g(t) = t2 ‖f ‖

(∗∗)  K

‖ ⋅ ‖ = ⟨⋅, ⋅⟩‾ ‾‾‾‾‾√ (∗∗)

f (x) = K(, x)∑
N

i=1
αi xi

α = (, … ,) ∈α1 αN ℝN

23

KERNEL MACHINES

25

LINEAR SUPPORT VECTOR MACHINE

Consider a binary classification problem for a dataset , .

Parametrized hyperplane

Decision function

Margin distance of to closest points

Scaling invariance: and for any .

Scaling trick (canonical form): Rescale such that (dep. on and),

resulting in and .

Max. margin classifier (linear SVM): s.t. .

See for details.

{(,)xi yi }N
i=1

∈ {−1, 1}yi

 := {ξ|⟨w, ξ⟩ + b = 0}hw,b

 (x) := sgn(⟨w, x⟩ + b) ∈ {−1, 1}fw,b

:=mw,b hw,b = ±(⟨ , ⟩ +)w
‖w‖

x∗
±

b
‖w‖

=hw,b hαw,αb =mw,b mαw,αb α ≠ 0

w ‖w‖ = 1

mw,b
w b

⟨w, ⟩ + b = ±1x∗
± =mw,b

1
‖w‖

 ‖wminw,b
1
2

‖2 (⟨w, ⟩ + b) ≥ 1 ∀iyi xi

notes

26

https://gttwld.de/ls2/slides/pdfs/LS2_InstanceBasedLearning_LinearSVM.pdf

TRANSFORMING CONSTRAINED TO UNCONSTRAINED OPTIMIZATION
A constrained optimization problem

can be formally translated to the unconstrained problem where

Main example: with the Lagrangian

so that can be written as .

f (ω) subject to (ω) ≤ 0 ∀i ∈ 1, … , Nminω ci (∗)

F(ω)infω

F(ω) = {
f (ω)

∞
if (ω) ≤ 0 ∀i ∈ {1, … , N}ci

otherwise

F(ω) = (ω, λ)sup ≥0λi

(ω, λ) := f (ω) + (ω),∑
i=1

N

λici

(∗) (ω, λ)infω sup ≥0λi

27

DUALITY IN CONSTRAINED OPTIMIZATION

So far (trivial):

Strong duality: Can we interchange the and operators?
More precisely, strong duality means that, if , then

 f (ω) s.t. (ω) ≤ 0 ∀i ∈ 1, … , N ⟺ (ω, λ)minω ci infω sup ≥0λi

sup inf

g(λ) := (ω, λ)infω

=F(ω)inf
ω

 

Primal Problem

g(λ)sup
≥0λi

⏟Dual Problem

Examples of sufficient conditions for strong duality (there are many!):
 and all are affine functions (linear optimization problem)
 is convex and all are affine (variant of Slater's condition)
 and all are convex and continuous on a compact and convex domain (minimax thm.)

f ci

f ci

f ci

Theorem (, Thm. 6.2.5): and are solutions of the primal and dual
problems, respectively, and strong duality holds, if and only if is a saddle point of ,
i.e. for all .

Bazaraa et al. 2006 ω∗ λ∗

(,)ω∗ λ∗ 

(, λ) ≤ (,) ≤ (ω,)ω∗ ω∗ λ∗ λ∗ ω, λ

28

https://doi.org/10.1002/0471787779

KARUSH-KUHN-TUCKER (KKT) CONDITIONS

Assume that strong duality holds for a pair (and that , are differentiable), then

 and for all (feasability)

 (stationarity of at)

 for all (complementary slackness)

These are known as the Karush-Kuhn-Tucker (KKT) conditions.

Theorem (see e.g. , Sect. 9.5):
 If strong duality holds, then the above conditions follow for a pair of solutions.
 For convex problems with strong duality (e.g. Slater's condition holds), the KKT conditions

are also sufficient for , being solutions for the primal and dual problems, respectively.

Note: One can find many regularity conditions in the optimization literature (so-called constraint qualifications, e.g.
) under which the KKT conditions are necessary, but one does not necessarily have strong duality.

,ω∗ λ∗ f ci

() ≤ 0ci ω∗ ≥ 0λ∗
i i = 1, … , N

(,) = 0∂

∂ω
ω∗ λ∗ (ω,)λ∗ ω = ω∗

() = 0λ∗
i ci ω∗ i = 1, … , N

Chi et al. 2017
(i) ,ω∗ λ∗

(ii)

ω∗ λ∗

Peterson, 1973

29

https://doi.org/10.1201/9781315366920
https://www.jstor.org/stable/2028581

DUAL PROBLEM FOR LINEAR SVM

Primal problem: subject to

Lagrangian:

Since is convex, and the constraints are affine (variant of Slater's
condition), we have strong duality. In particular, the KKT conditions are necessary and
sufficient. Moreover, we can maximize
over , where and satisfy

 Dual problem (see for details): subject to , where

 ‖wminw,b
1
2

‖2 1 − (⟨w, ⟩ + b) ≤ 0 ∀i ∈ {1, … , N}yi xi

 (w, b, λ) = ‖w + (1 − (⟨w, ⟩ + b))1
2

‖2 ∑N
i=1 λi yi xi

f (w) = ‖w1
2

‖2

g(λ) := (w, b, λ) = ((λ), (λ), λ)minw,b w∗ b∗

≥ 0λi (λ)w∗ (λ)b∗

 ,((λ), (λ), λ) = 0
∂

∂wi

w∗ b∗

  

(λ)=w∗ ∑N

i=1
λiyi

xi

((λ), (λ), λ) = 0
∂

∂b
w∗ b∗

  

=0∑N

i=1
λiyi

⇒ notes g(λ)max ≥0λi
= 0∑N

i=1 λiyi

g(λ) = ((λ), (λ), λ) = − ⟨ , ⟩w∗ b∗

∑
N

i=1
λi

1
2 ∑

N

i,j=1
λiλjyiyj xi xj

30

https://gttwld.de/ls2/slides/pdfs/LS2_InstanceBasedLearning_LinearSVM-DualProblem.pdf

SUPPORT VECTORS

By complementary slackness, for , i.e.

This means that in the linear combination only those patterns
contribute that satisfy the constraint as an equality (they are on the margin!) known as
support vectors. In particular, all other patterns have no influence on the optimal
hyperplane.

DECISION FUNCTION

Plugging in the expression for into the decision function of the linear SVM, we
obtain

where is given by the dual problem, and, due to , for all
with (e.g. by averaging).

(1 − (⟨ , ⟩ +)) = 0λ∗
i yi w∗ xi b∗ i = 1, … , N

= 0 or (⟨ , ⟩ +) = 1λ∗
i yi w∗ xi b∗ (∗)

() =w∗ λ∗ ∑i λ∗
i yixi xi

()w∗ λ∗ fw,b

(x) = sgn(⟨ , x⟩ +)f (),w∗ λ∗ b∗ ∑
N

i=1
λ∗

i yi xi b∗

λ∗ (∗) = − ⟨ , ⟩b∗ yj ∑N
i=1 λ∗

i yi xi xj j

> 0λ∗
j

31

NONLINEAR SVM

In the linear SVM with decision function , a new pattern is
compared with all support vectors using as similarity measure and then
categorized based on the weighted sum of these similarities.

Above, the dimension of the was arbitrary. Thus we can replace them by their image
under a feature map into a feature space with inner product , so that

where defines an inner product kernel, and is a solution to
the dual problem s.t. , where in, analogy to the linear SVM,

Note: In the exercises for this section you will use these results to create simulations for linear and nonlinear
Support Vector Machines. You can view my implementations .

x ↦ sgn(⟨ , x⟩ +)∑N
i=1 λ∗

i yi xi b∗ x

xi ⟨ , x⟩xi

xi

ϕ :  →   ⟨⋅, ⋅⟩

f (x) = sgn(K(, x) +)∑
N

i=1
λ∗

i yi xi b∗

K(x,) := ⟨ϕ(x), ϕ()x′ x′ ⟩ λ∗

g(λ)max ≥0λi
= 0∑N

i=1 λiyi

g(λ) = − K(,)∑
N

i=1
λi

1
2 ∑

N

i,j=1
λiλjyiyj xi xj

here

32

https://share.streamlit.io/sgttwld/learningsystems2/InstanceBasedLearning/streamlit_app.py

EXTENSIONS OF STANDARD SVMS

So� Margin (in case of overlapping classes due to noisy data): Introduce slack variables
, relax the constraints to , and minimize

additionally to , where denotes a trade-off parameter. The corresponding
dual problem takes exactly the same form as the hard margin SVM from the previous
slides, with the additional constraint that (so that) .

SVM Regression (linear and kernel regression): Analogous to so� margins, one introduces
slack variables and minimizes subject to

 and for some , where .
This can be transformed to a dual problem with Lagrange multipliers and a decision
function of the form .

≥ 0ξi (⟨w, ⟩ + b) ≥ 1 −yi xi ξi C ∑i ξi

‖w‖2 C > 0

≤ Cλi ∈ [0, C]λi ∀i = 1, … , N

, ≥ 0ξi ξ∗
i ‖w + C (+)‖2 ∑i ξi ξ∗

i

f () − ≤ ε +xi yi ξi − f () ≤ ε +yi xi ξ∗
i ϵ > 0 f (x) := ⟨w, x⟩ + b

,λi λ∗
i

f (x) = (−)K(, x) + b∑i λ∗
i λi xi

33

THE KERNEL TRICK
Consider a learning algorithm whose prediction function takes the form

where is some inner product kernel. Then we can obtain a new algorithm by simply
replacing the kernel by another inner product kernel .

Examples include

Linear SVM (classification) Nonlinear/kernel SVM

Linear SVM Regression Kernel regression

Principal component analysis (PCA) Kernel PCA

f (x) = F(()K(, x) + b)∑
N

i=1
αi yi xi

K

K K ′

⟹

⟹

⟹

34

INSTANCE-BASED METHODS NOT RELYING ON INNER PRODUCTS

 nearest neighbour classification: Choose the label that is most common under the
nearest neighbours (given some notion of distance).

k nearest neighbour regression: Average the values of the nearest neighbours.

RBF network regression: for some localized function (usually
a Gaussian)

k k

k

f (x) = h(‖x − ‖)∑n αn xn h

35

