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Abstract

The Feynman path integral is a heuristic tool widely used by physicists from many
different branches. The probably best known application is the calculation of probability
amplitudes in quantum theory. Since its introduction by Richard P. Feynman in 1948,
as an alternative approach to non-relativistic quantum mechanics, many attempts have
been made to put the theory on a rigorous mathematical footing, each with its own
advantages and shortcomings.

In this thesis, we will follow the treatment due to Albeverio and Hgegh-Krohn, which
is based on Hormander’s finite-dimensional theory of oscillatory integrals, and therefore
relies directly on the oscillatory nature of the path integral.

By restricting the class of potentials to Fourier transforms of complex measures,
solutions to the Schrédinger equation in the form of infinite-dimensional oscillatory
integrals are given. As an application of the theory’s own method of stationary phase,
it follows that in the semiclassical regime, the main contribution to the probability
amplitude is determined by the classical path.
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1 Introduction

The main purpose of this thesis is a mathematical treatment of the Feynman path inte-
gral together with an appropriate method of sationary phase, in order to obtain a semi-
classical approximation of solutions to the Schrodinger equation for a non-relativistic
particle experiencing an external potential.

Starting from the well-known theory of finite-dimensional oscillatory integrals, in
chapter 2 we will pass to a construction of oscillatory integrals in infinite dimensions.
By applying the theory to quantum mechanics in section 2.4, the developed theory
will be used to construct solutions to the Schrodinger equation, providing a rigorously
defined path integral formula. In chapter 3, a general stationary phase approximation
for oscillatory integrals is developed, which will be used in section 3.2 to study the
behaviour of the path integral solutions of chapter 2 in the semiclassical regime.

The heuristic Feynman path integral. In his Ph.D. thesis from 1948 [13],
the physicist Richard P. Feynman came up with a new heuristic approach to non-
relativistic quantum dynamics, known as the Feynman path integral formulation of
quantum mechanics. As can be demonstrated, for example by the famous Double Slit
experiment, a quantum system always knows of all possible ways to pass between two
states, in the sense that the total probability to pass from one quantum state to another
depends on the probabilities of all possible paths connecting these two states. Based
on this idea, Feynman postulated a formula for the total probability amplitude in the
form of a weighted sum over all possible virtual paths, generally known as a sum over
histories, where the contribution of each path is determined from the value of the
classical action for the given path.

From a mathematical point of view, the problem arises as soon as one considers
systems with infinite degrees of freedom, where the sum over histories turns out to be
an integral on an infinite dimensional space of paths. In the case of a non-relativistic
point particle moving in the field of an exterior potential, a typical path integral formula

2

where S(z) denotes the classical action along the curve x and (2 is some subset of

takes the heuristic form

C([0,t], R%), specified by imposing suitable boundary conditions. Whereas Dz in gen-
eral has no rigorous meaning in terms of measure theory, but rather has to be determined
heuristically in each given situation separately, under the requirement that all paths in
the domain shall be weighted uniformly.

Even though widely used by physicists, there are several apparent mathematical
difficulties with such an expression, which are often sucessfully neglected in physics
literature. First, it is not a priori clear, why {2 should be contained in the domain of S,
which consisits of terms involving the derivative of the paths, as well as the potential.
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Next, even in the simple case when (2 is one-dimensional, for example when it only
consists of linear functions on [0, ¢], indexed by their slopes ¢ € RY, i.e. z¢(s) = s, it is
ZS(I&

still questionable in which sense the expression f e )d¢ exists, since S is real-valued

9 is not Lebesgue integrable. However, in the general case when 2

and therefore e’
is infinite-dimensional, the most obvious difficulty is to give meaning to the heuristic

expression Dx.

Rigorous approaches. Despite all its mathematical shortcomings, most physicists
consider the Feynman path integral as a valuable tool, which is why many attempts
have been made to provide a suitable mathematical framework. But as of today, there
is no rigorous theory which is general enough to cover all physically relevant cases of
potentials, and at the same time provides new mathematical content instead of merely
being a reformulation of the canonical approach.

One of the early attempts to rigorously define path integrals was by analytic con-
tinuation of Wiener integrals, first introduced by Cameron [8], and further developed
by many other authors (e.g. [24]), but a stationary phase approximation and at many
points rigorous results are missing.

Next, there is the sequential or time-slicing approach, where the initial idea already
came from Feynman himself. By using the Lie-Trotter product formula on the unitary
group generated by the Hamilton operator of the system, together with a suitable
partition of the time interval, one can write the unitary group as a strong limit of
finite-dimensional integral operators, which take the form of discretized path integrals.
A detailed exposition together with connections to the analytic treatment can be found
in [23).

Moreover, there are two separate probabilistic approaches, one that is more prac-
tically oriented and connected with Poisson processes [25], and another one based on
Hida distribution theory [18], which is more abstract by nature.

However, in this thesis, we will follow a completely different treatment, which di-
rectly focusses on the oscillatory nature of path integrals, and is based on the well-known
finite-dimensional theory of oscillatory integrals by Hormander [21, 7.8]. However, the
major flaw of the theory is its limited applicability in physics, because it only works
for potentials that are Fourier transforms of complex measures and satisfy certain reg-
ularity conditions (see the explanation below, and Theorem 3 for more details). It can
however by slightly extended to cover the case of an additional harmonic oscillator term
in the potential (see [1]), as well as polynomially growing terms [6].

Detailed structure of the thesis. Chapter 2 is devoted to the introduction of
oscillatory integrals and their application to quantum mechanics, leading to solutions of
the Schrédinger equation for a non-relativistic point particle in the form of a Feynman
path integral. We start with the definition of oscillatory integrals on R™ in section 2.1,
followed by some simple properties, which will be needed later.

In 2.2, after a short survey on complex measures in a general measurable space, we
introduce the Fresnel class % (H), the space of Fourier transforms of complex measures
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on a real separable Hilbert space H. The section is closed by Theorem 1, which shows
that for any f=p € .7 (R™) its finite-dimensional oscillatory integral exists and can be
calculated by an explicit expression involving an ordinary integral with respect to the
measure y itself. This result is referred to as Cameron-Martin type formula, due to its
similarity to the original Cameron-Martin formula for Wiener integrals [9)].

Section 2.3 consists of two parts: First, we show how oscillatory integrals on R™
can be extended to arbitrary finite-dimensional inner product spaces by using any ba-
sis representation, and a Cameron-Martin type formula equivalent to Theorom 1 is
established in Proposition 2. After that, the extension to infinite-dimensional separa-
ble Hilbert spaces, in form of the normalized Fresnel integral, is made and the final
Cameron-Martin type theorem is presented in Theorem 2.

In section 2.4, the so called Cameron-Martin space H; is introduced, which con-
sists of all z € H'(0,t; R?) with the property x(t)=0, equipped with the inner product
(x,y)t :== (@', ¥") L2(j0,4)). Theorem 3 then states the path integral formula based on the
normalized Fresnel integral on H;, which will be proved in the rest of the section by
first showing several intermediate results (Propositions 4-9, Lemmas 4-6) that are then
put together in the proof starting on page 45. An explanation of the statement can be
found below.

Chapter 3 contains two main results, Theorem 4 and 5, which describe a stationary
phase approximation of Fresnel and path integrals, respectively. In section 3.1, after
some introductory results and definitions, Theorem 4 states the main ingredient for the
stationary phase approximation of the path integral from Theorem 3. Under certain
regularity conditions, we give an approximation of a special class of normalized Fresnel
integrals depending on a parameter h.

This result will then be used in Section 3.2, in order to give an approximation of
path integral solutions to the macroscopic Schrédinger equation in the semiclassical

regime.

Explanation of the main results. Theorem 3 shows that strong solutions to the
Schrédinger equation %wt = —iHy, for H = Hy+V, Hy = —A/2, in d dimensions, can
be constructed by using the normalized Fresnel integral from Chapter 2. The crutial
assumptions are, that V as well as the initial datum ©¥g=¢ are Fourier transforms of
complex measures, while V has to be at least two times continously differentiable with
bounded first and second order derivatives, and ¢ has to belong to D(H) = D(Hy) =
H?(R?), the Sobolev space of second order, on which H is self-adjoint due to Kato-
Rellich. Under these hypotheses, we prove that v, defined by

Ui() i= Fiz o e VOO0 o(0(0) + 6))

is in H2(R?) and solves the Schrédinger equation, where J;(f) denotes the normalized
Fresnel integral of a function f on the Cameron-Martin space H;. The precise definition
of Fi(f) can be found in Definition 4, but here let us informally explain, how it is
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constructed. First one defines oscillatory integrals in finite dimensions, usually denoted
by [° e%‘m‘2g(x)dac, as the limit of fe%|z|zg(x)1/1(5x)dac as € — 0, where v denotes a
Schwartz function such that (0) = 1. If the limit exists and does not depend on v,
then g is called Fresnel integrable.

For example, from the Cameron-Martin type formulas (Theorem 1, Proposition 2),
we obtain [* el dx = (27i)"/2, which, in absolute value, grows exponentially with
the dimension n of the underlying space. Hence, before passing to infinite dimensions,
one wants to normalize the Fresnel integral properly (by multiplying with (27i)~"/2).

The extension to general, perhaps infinite-dimensional, separable Hilbert spaces H,
is then done by means of sequences of finite-dimensional projections (P, )nen. More
precisely, the normalized Fresnel integral on H, denoted by Fx(f) or also by

/ e%”zllzf(x) dx
H

is defined as the limit of the sequence of normalized Fresnel integrals on P,,{, whenever
the limit exists and is independent of (P,,)nen. For example, on the Cameron-Martin
space Hy, in the proof of Theorem 3, the P,, are taken to be projections from H; to
piecewise linear functions on [0,¢] (see Examples 2 and 3).

Recalling, that in our case the classical action along a path y € H'(0,¢;R?) is given
by S(y) := fg (ly'(s)?/2 =V (y(s)))ds, for the Fresnel integral 1;(£) we may informally
write

Bi(€) = /H 56O 5 (2(0) + €) da

where z + ¢ denotes the path s +— x(s) + ¢, with endpoint ¢ € R?, which takes the form
of a path integral as introduced by Feynman in [13].

The other core result is given in Theorem 5, which is a direct application of Theorem
4 and gives a semiclassical approximation of the path integral solution obtained in
Theorem 3. It says that, if the potential V and initial datum ¢ are Fourier transforms
of complex measures, which have finite moments of all orders (this translates into high
regularity of V' and ¢), from the general stationary phase approximation for Fresnel
integrals developed in Theorem 4, at lowest order in the semiclassical parameter h, the
path integral solution to the macroscopic Schrédinger equation, ¥ (€), is determined
by the classical path v, with v(¢) = £ and 4(0) = 0.

The precise result of Theorem 4 is in direct accordance with [26, Theorem 12.5],
which is obtained from the standard approach to semiclassical analysis, and it can be
shown that it leads to the physical result that the semiclassical wave function concen-
trates around its classical trajectory.

Remark on notation. Many authors like to stick with fixed letters for configura-
tion and Fourier space variables, e.g. x and k respectively, but since in our setting, most
functions living on the configuration space are Fourier transforms of complex measures,

we won’t use any convention of this type.



2 Oscillatory integrals

When speaking of oscillatory integrals, we mean expressions of the form

/ @) f () dx (2.1)
r

where the phase function ¢ is taken to be real-valued and f is a complex amplitude
function, both being defined on a certain domain I', which together with ¢ and f
has to be chosen in such a way that the expression makes sense either as an ordinary
Lebesgue or Riemann integral or as a properly defined extension of these. Dealing with
such extensions is the main concern of this section.

Intuitively we can understand why asking for absolute integrability, for example in
the case I' = R, could be too rough: By taking absolute values in (2.1), the oscillating
behaviour of e’ would be completely suppressed, whereas in regions where ¢ varries
strongly in comparison to f, the positive and negative parts of the oscillating integrand
will nearly cancel out, so that these contributions will remain small. Consequently the
integral is likely to be finite for more general amplitudes than in the non-oscillating
case. This is the idea that we should have in mind, when we rigorously justify the
existence of oscillatory integrals in what follows.

2.1 Hormander’s finite-dimensional oscillatory integral

We begin with the standard definition of oscillatory integrals in finitely many dimen-
sions due to L. Hormander [20], which was largely developed as one of the basic tools
for studying pseudo-differential and Fourier integral operators with applications in the
framework of partial differential equations [21]. We consider the case I' = R™ in ex-
pression (2.1) for some n € IN, i.e. integrals of the form

I9(f) == /n @) f () dx (2.2)

In this case, if dz denotes the Lebesgue measure on R™, then I?(f) can be viewed
as an ordinary Lebesgue integral only for amplitudes f in L'(R",dx). But it is one of
the most striking features of (2.2), that there is a strictly bigger class of amplitudes to
which I can be extended, while some of the most useful properties of ordinary integrals
can be kept valid or translated into appropriate versions for the given extension.

In [20,21] finite dimensional oscillatory integrals for quite general phase functions
are defined!. However for the concerns of this work, it will suffice to consider phase

IMore precisely, in [21] ¢ is taken to be in C°°(£2) with {2 being a certain subset of R™ s.th. ¢ is
homogeneous of order 1, Im(¢) > 0 and ¢ is not allowed to contain any critical point in 2.
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functions of a much simpler form. In the finite-dimensional case we will deal with phase
functions which are proportional to the square of the Euclidean norm in R"™, more
precisely we use ¢ = |-|?/2p, where p > 0 is some fixed constant. Later, when we
apply the theory to quantum mechanics, p will be replaced by an expression involving
a semiclassical paramter h. Such oscillatory integrals—or more generally, when ¢ is
a non-degenerate real quadratic form—are said to be of Fresnel type. The following
definition is taken from [32, p. 33] and modified in order to fit into our setting.

Definition 1 (Finite-dimensional oscillatory Fresnel integral). Let S* denote the space
of Schwartz functions ¢ € S(R™) with the additional property ¢(0) =1 and let f be a
measurable function on R™, such that the integral

L. f) o= [ ) gt o (23)

exists for all p > 0, € > 0 and all ¢ € S*. We say that f is Fresnel integrable, whenever
the limit lim, _, g+ I (¢, f) exists and is independent of ¢ € §*. In this case the limit is
denoted by

/O ezipmzf(x) dx (2.4)

n

and is called the (finite-dimensional oscillatory) Fresnel integral of f.

Our first task now will be to identify some subclasses of Fresnel integrable functions.
First of all, any f € L'(IR™) is Fresnel integrable, because in this case the integrand in
(2.3) is dominated by |||/« | f| € L*(R™) and therefore, by using Lebesgue’s dominated
convergence theorem, the limit can be taken inside of the integral. Due to ¢(0) = 1,
this shows that (2.4) coincides with the ordinary Lebesgue integral [ e!l”I°/2¢ f(x) du.

But the theory of oscillatory integrals would not be of much use, if there didn’t
exist more interesting classes of Fresnel integrable functions. In [20,21] a detailed
treatment of a quite large class of such functions is given, which are called symbols.
These functions together with their oscillatory integrals are of special importance in
the theory of pseudo-differential and Fourier integral operators.

However, in view of later applications we shall focus on another interesting set of
Fresnel integrable functions, which consists of Fourier transforms of complex measures.
The main advantage in considering these—in the literature also known as functions
of Fresnel class—is the fact, that in this case oscillatory integrals can be explicitly
computed in terms of ordinary integrals with respect to the associated complex measure
(see Theorem 1).

When we extend oscillatory integrals to infinite-dimensional separable Hilbert spaces
in section 2.3 and apply the theory to quantum mechanics in section 2.4, we will make
heavy use of this class as well. Therefore, in the following section we shall study its
definition and most important properties in more detail and generality.
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Before that, let us proof some first simple properties inherited from ordinary inte-
grals, which we will need later. The reference for Lemmas 1 and 2 is [32].

Lemma 1 (Unitary change of variables). If U is a real orthogonal n X n matriz and
f a Fresnel integrable function on R™, then the function x — f(Ux) is also Fresnel

integrable and it holds

/O eZ_i/)‘m‘2f(U:c) dx = /O e#‘mﬁf(z) dx (2.5)

n

Proof. Due to |detU| = 1 and |[Uz| = |z| for all x € R", performing the change
of variables x — Uz =: y in the integral fe#lzlzf(Ux) p(ex)dx, where ¢ € §* and
€ > 0 are arbitrary, gives fe%‘y‘zf(y) o(UTey) dy. Since y — p(UTy) is in S* and f
is Fresnel integrable, by taking the limit € — 0, we obtain the Fresnel integral of f. O

In view of later applications, it will be usefull to allow phase functions in oscillatory
integrals, which are of the more general form z + |Az|?, for a real invertible n x n
matrix A. But due to the following result, this case can be reduced to the already
defined oscillatory Fresnel integral of Definition 1.

Lemma 2 (More general phase functions). If A is a real invertible n x n matriz and
if f is a measurable function on R™, such that x — f(A~'x) is Fresnel integrable, then
for all p € S* and p > 0, it holds

. i Ax|? 1 O 2 _
lim | e 4 f(2) plew) du = aev AT J ew W f(AT ) dy  (2.6)

Therefore, for those functions f, it makes sense to use the notation

o 2 1 ° 2
55 | Az| — PRI 9.
/nez f(x)dx TdotA] S © f(A™ y) dy (2.7)

Proof. The proof consists of integration by substitution on the left-hand side, the fact
that z — p(A71z) is in §*, and = +— f(A~'x) being Fresnel integrable. O

2.2 The Fresnel class

Let us first review some basic notions and results involving complex measures on a
general measurable space (X, A), taken from [31, Chapter 6].

We say that a complex-valued set function on A is a complex measure, if it satisfies
pu(A) =372, 1(A;) for any countable partition of A € A, that is a collection {A4;}°, C
A of pairwise disjoint measurable sets with A = U;c1 A4;.
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In particular, this implies that positive measures are not a subclass of complex
measures, since the former are allowed to take infinite values, whereas in the complex
case |((A)| has to be finite for all A € A. The countable additivity then yields, that
for any partition {4;}°, the series Y=, u(A;) has to converge in C.

In [31, p. 117] it is shown that a complex measure u is dominated by a unique
positive measure, defined by |u|(A) := sup)_, |u(A;)|, where the supremum is taken
over all countable partitions {A4;}5°, of A. It is called the total variation measure of
w and it turns out to be finite. The total variation of p is the number ||| = |u|(X),
which defines a norm on . (X), the linear space of complex measures on (X,.A).

A useful property of complex measures involving the total variation measure is the
existence of a polar representation [31, 6.12]: For any complex measure p on (X, A) there
exists a unique complez-valued measurable function h with |h(z)| =1 for allx € X and

W(E) = /E Bl (2.8)

for all E € A, i.e. du = hd|u| for short. Also the converse is true [31, 6.13]: If v is
a finite positive measure on A and h a complex-valued measurable function on X with
|h(z)| =1 for all x € X, then defining u(E) by (2.8) for all E € A gives a complex
measure on A with |p| = v.

The polar representation can be used to define integration with respect to a complex
measure £ in a straight-forward way [31, p. 129]: Let hd|u| be the polar representation
of u, then a measurable function f is called u-integrable, if it is integrable with respect
to [p| and in this case, one defines [ fdu := [ fhd|u| and ||f| o1 (x,) = [y |f]d|pl|.

The complex product measure pu X v of two complex measures u, v is defined in a
very similar way. If du = hd|u| and dv = g d|v| are polar representations, then for any
A e A® A one sets

px v(A) = /1A($,y) h(@) g(y) d(|u| > [v])(x, y) (2.9)

Since the integrand is bounded (by 1) and |u|,|v| are finite, we can apply Fubini’s
theorem in order to get the identity ux v(A x B) = u(A) u(B) for any A, B € A, which
is usually used to construct the product measure for positive measures. Here (2.9) is
taken as definition, in order to avoid the complication of having to extend a complex
set function on the rectangles to a complex measure on the whole o-algebra.

Before we return to the problem of finding Fresnel integrable functions on R", we
define the so called Fresnel class on a general real seperable Hilbert space H.

Definition 2 (Fresnel class). Let .# (H) denote the linear space of complex measures
on a real seperable Hilbert space H, equipped with its Borel o-algebra. The set of
Fourier transforms of such measures, i.e. all bounded continuous functions on H of the

form

k) = /H ¢ilh2) gy ) (2.10)
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where p € 4 (H) and (-,-) denotes the inner product in H, is called the Fresnel class
of H and denoted by .Z(H).

As is true for the Fourier transform on L2-spaces, an element of .% () carries the
complete information of the underlying measure. In other words, the Fourier transform
M(H) — F(H), p [iis one-to-one [T, 3.8.6].

The property of Fourier transforms of mapping convolution to pointwise multipli-
cation can easily be seen to hold in this setting, too. As a consequence, we obtain
that Z(R™) is closed under pointwise multiplication. The convolution p* v of com-
plex measures yu,v € .4 (H) is the set function on B(H) defined by the pxv-integral of
(z,y) = La(z+y), ie. pxv(A) = [1a(z+y) d(pxv)(z,y) for any A € B(H). Since we
have |u* v(A)| < |p| * |v|(A) for all A € B(H) and |p| = |v| is finite, it is an application

of the theorem of monotone convergence to see that p * v is a complex measure.

Proposition 1 (closedness under multiplication). If f,g € F(H), i.e. f=i and
g =10 for some pu,v € M (H), then their pointwise product fg is also contained in
F (M) and moreover it holds fg = ji * .

Proof. 1f di = hd|p| and dv = g d|v| are the polar representations of p and v, then for
any bounded function u on M, it holds [ud(p*v) = [u(z +y)d(u x v)(z,y), which
is equal to [([w(z + y) h(x)d|u|(x)) g(y) d|v|(y), since it is allowed to apply Fubini’s
theorem due to the bounded integrand and the finiteness of |u| and |v|. Thus, we find
for any k € H: pxv(k) = [ %) du(z) [e*¥ dv(y) = (k) (k) = f(k)g(k). O

This implies that % (H), equipped with pointwise addition and multiplication, forms
an algebra, where its unit element is given by the Dirac measure Jg.

Even though, we don’t need it in this thesis, let us remark, that we have even more
than that: The property [|u* v| = |u x v|(H) < |p|(H) |v|(H) = ||p| ||| of complex
measures i, v makes .4 (H) to a normed algebra with respect to convolution and, as
is shown in [7, 4.6.1], it is complete with respect to the total variation norm, hence
forming a Banach algebra.

Uniqueness of the Fourier transform together with Proposition 1 allow us to carry
these properties over to .% (H) by using the injectivity of the Fourier transform to induce
a norm on the Fresnel class: For f € #(H) let py denote the measure in . (H) with
iy = f, then || f|| z) = |lps | defines a norm on .7 (H). In this way, .# (H) inherits the
Banach property from .# (H), and therefore the two spaces are isomorphic as Banach
algebras with the isomorphism given by the Fourier transform.

Coming to the main result of this section, we return to finitely many dimensions,
i,e. H = R" for some n € IN. We will show that any function f in the Fresnel class
Z(R™) is Fresnel integrable and its Fresnel integral can be expressed in terms of an
ordinary integral with respect to the corresponding measure uy € #(R"). It is a
reformulation of [12, Prop. 2B] adapted to our setting.

~10 -
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Theorem 1 (Cameron-Martin type formula I). Any function f € F(R™) is Fresnel
integrable and its Fresnel integral is given by

n n

J T Bl fayde = (2nip)? | (@) (2.11)

where iy is the measure in # (R™) satisfying iy = f and il/?

value of Vi, that is i*/? := '™/%,

is taken to be the principle

Proof. Following the reasoning in [12], the strategy will be as follows: First, we want to
show that (2.11) holds for Schwartz functions, where the oscillatory integral is replaced
by an ordinary Lebesgue integral due to S(R™) C L!(R™). Second, we extend the result
to products of functions from the Schwartz space and the Fresnel class, which will then
allow us to show (2.11) for f € F(R").

Let ¢ € S(R™) and let ¢ denote its inverse Fourier transform, where constants are
chosen as in (2.10), i.e. (z) = [g. @Y @(y)dy for all z € R". The first thing we
want to show, is

/ eﬁ‘mﬁw(z) dx = (27rip)"/2/ 67%)'96'2@(:6) dz (1)

Even though it’s not needed in the proof, we remark that for Schwartz functions ¢,

we have du,(z) = @(x)dx, because by assumption, p, has to fulfill i, = ¢ and the

Fourier transform of the complex measure? ¢(z) dr coincides with the Fourier transform

of the function ¢, which is ¢. The assertion then follows from the uniqueness of fi,.
This shows that (i) is exactly (2.11) in the case of f being a Schwartz function.

Proof of (i): In order to allow the application of Fubini’s theorem in the next step
ela|?

below, we smuggle in 1 = lim,_,g+ €~ on the Lh.s. of (i). We are allowed to apply
Lebesgue’s dominated convergence theorem, since |e=¢171” ¢il#1*/20(2)| < | ()| for all
r € R™ and ¢ > 0. Hence we obtain

/ e#lzlzw(z) dr = lim efs‘z‘Qeﬁlzlch(x) dx

e—0t R"

By plugging in ¢(2) = [, €'Y @(y) dy we get

/ el s o p(z) do = / ( / e@#”ﬂc'%“%wd:c) P(y)dy

where we used Fubini’s theorem to interchange the order of integration, which is allowed
due to (z,y) — e=1*I*3(y) being in L' (R?"). Next, we use the standard result, that for
any « € C with Re(a) > 0, the Fourier transform of the Gaussian exponential e—all?

/ ei(y,m>e—a\m\2d$ _ (E)nme—ﬁ\yﬁ (*)

«

is given by

2For any f € L'(R™), du := fdz defines a complex measure p € .#(R™), since it has the polar
decomposition du = hd|u| where h is the phase factor in the polar decomposition of f, i.e. f = h|f|
and d|p| = | f| dx.
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2  OSCILLATORY INTEGRALS

which can be computed in many different ways, e.g. by reducing to the one-dimensional
case and then using contour integration [34]. Using (x) with o = & — Q—ip, the equation
above gives

] ) n/2 /2 2
/ e~elo ez ol o(z) do = ( 2mp ) / e~ 2=V p(y) dy

2pe — 1

which proves (i), since on the right-hand side the limit € — 0 can be taken inside of
the integral by using the theorem of dominated convergence again. (i)

Next, we will prove the following generalization of equation (i): For any ¢ € S(R")
and f € .Z(R"™), it holds

| e@rwyr = @ripr [ # o - @)

R™ xR"™

For f(z) =1 this reduces to equation (i), since in this case the corresponding measure
in .#(R™) is given by py = dp, the Dirac measure with mass at 0 € R”.

Proof of (#1): By plugging in the Fourier represention of f and using Fubini’s
theorem to interchange the order of integration, we obtain

/n eﬁ|x|2<p(x)f(ac) dr = /n (/n €ﬁ|ml2+i<z’y>@($) dac) dps(y)

which after completing the square in the exponential and performing a change of vari-

/ (/ el sﬁ(UPy)dU) e E dpy (y)

For any fixed p and y, the shifted function ¢,y : u — @(u— py) is in S(R™), which

ables is equal to

allows us to apply (i) to the inner integral. Hence, we find

(27Tip)”/2/ (/ e E 1, (u) dU) e EI dpp(y)
and due to @,y (u) = e~ "P¥) p(u) an application of Fubini’s theorem finally gives
g2 . \n _ioy, 2
[ e ot faydo = mip [ () ds )
n Tlr>< n

The change of variables (y,u) — (y,u+y) =: (y, z) then proves the desired result. (i)

Proof of the theorem: Let e > 0 and ¢ € §*, i.e. ¢ € R™ and ¢(0) = 1 (compare
Definition 1). As an application of equation (ii), we find

; 5 P\ /2 ip |, 12 —x
Lo f)= [ @) plea o = BTEIS [ 0 () dpy ) dy

- 12 —



2  OSCILLATORY INTEGRALS

where we also used the equality ¢ () = @(Z)/e" for all x € R™. Hence, by performing
another simple change of variables, we obtain

L(p.f) = (2mip)™/? / 21V 5(y) dyuy () dy

In order to prove the Fresnel integrability of f, we need to check whether I.(p, f)
converges as € — 0 and whether its limit is independent of ¢ € §*. Since the absolute
value of the integrand is dominated by the function (z,y) — |¢(y)|, which is an element
of L'(dus x dy), an appliciation of Lebesgue’s theorem of dominated convergence is
justified. It follows

li Lo, 1) = Crip”? [ e (o) [ gy < o

n n

In particular, the limit exists and due to f &(y)dy = p(0) = 1, its value is independent
of p € §*. This proves that any f € .%(R") is Fresnel integrable and its Fresnel integral
is given by (2.11). O

The simplest example of a Fresnel class function f € #(RR™) is given by the constant
function f(x) =1 Vz € R", for which py is just the Dirac measure centered at z = 0.
Then the theorem shows fﬁn el dy = (mi)™/2.

2.3 Infinite-dimensional Fresnel integral

As was pointed out in the introduction, we are interested in a notion of Fresnel integra-
tion on infinite-dimensional Hilbert spaces, because in the application to quantum me-
chanics in section 2.4 we will show, how Fresnel integrals on special infinite-dimensional
spaces of paths can be used to construct solutions to the Schrédinger equation for a
point particle in Fresnel class potentials.

Actually, we are not going to use the same definition as S. Albeverio and R. Hoegh-
Krohn used in their pioneering work [3], where they developed one of the first rigorous
realizations of Feynman path integrals in terms of oscillatory integrals. For them, an
equation similar to (2.11) served as definition of the Fresnel integral: For a function f
in the Fresnel class .7 (H) of a real separable Hilbert space H, they set

/ esl7l” () dz = / e 310 dp g (a) (2.12)
H H
where puy € (M) is the measure with iy = f. In other words, they used the right-
hand side, which is just an ordinary integral with respect to a complex measure, to give
meaning to the a priori ill-defined left-hand side.

Later, when the theory was further developed in several directions, another definition
of infinite-dimensional oscillatory integrals was proposed. First introduced in [12] and

~ 13—



2  OSCILLATORY INTEGRALS

developed in [1] in connection with an infinite-dimensional version of the method of
stationary phase, it is now known as the finite-dimensional approximation approach
to infinite-dimensional oscillatory integrals and—as its name lets suspect—it relies on
finite-dimensional oscillatory integrals as defined in section 2.1 and a suitable limiting
procedure.

In principle, this approach will define oscillatory integrals for a bigger class of func-
tions, while on the Fresnel class it coincides with the original definition (Theorem 2).
Even though we will stick with the Fresnel class for the biggest part of the thesis, we
will still use the more general definition, since it relies on the well-established finite-
dimensional theory and also favors the implementation of an infinite-dimensional sta-
tionary phase method.

Before we can get started with the infinite-dimensional theory, we first want to
introduce a technical generalization of Definition 1, in order to cover general finite-
dimensional inner product spaces. This work, as simple as it is, has not been done
in the literature on the subject, even though it is needed for a rigorous treatment, in
particular concerning the potential of confusion we address in Example 1.

Let (W, (-, -)) be a real inner product space with n := dim(W) < oo and let vz denote
the isomorphism between W and the Euclideon space R", given by vg : W — R",
x — (x1)}_,, where z,, := (e,, ) denote the components of x € W with respect to a
given orthonormal basis E = (ey)}_; in W. Similar to the convention of neglecting the
difference for a given function between being defined on a finite-dimensional linear space
or on the corresponding isomorphic Eucliden space, we will allow for a slight abuse of
notation, which is justified by the following lemma.

Lemma 3 (Independence from the choice of basis). Let W be an n-dimensional real
inner product space and f a measurable function on W, such that there is a coordinate

representation f o %51’ which is Fresnel integrable on R™. Then the Fresnel integral

| e g @) s (2.13)

does not depend on the chosen orthonormal basis E, i.e. any coordinate representation

of f is Fresnel integrable and its Fresnel integral coincides with (2.183).

Proof. This is an application of Lemma 1. Let E and F' be two orthonormal bases of
W, then the coordinate representation of the transition map g o 7;1 :R™ - R" is an
orthogonal matrix O. By Lemma 1 the function = — f(v5'(Oz)) is Fresnel integrable

on R™ and moreover

[ e gt wnas 2 [ e 1 0

n

Since 75 (0x) = 5" ovr o vi' (x) = vz ' () for all z € R™, this proves the claim. 0O

— 14 —



2  OSCILLATORY INTEGRALS

Definition 3 (Fresnel integral over finite-dimensional inner product spaces). We say
that a function f on an n-dimensional real inner product space W is Fresnel integrable,
whenever f O’ygl is Fresnel integrable on R"™ for some orthonormal basis E of W. Since,
by the above Lemma, its Fresnel integral (2.13) does not depend on E, it is worthwhile

to choose the more convenient notation

/Oeﬁ”z”zf(:c)d:c = /i e " f (35 (@) da (2.14)

w

for the Fresnel integral of f.

As a remark, let us clarify the meaning of dz in the expression on the left-hand side
in (2.14). The most straight-forward way to carry the Lebesgue measure A in R"™ over
to an arbitrary inner product space W, is established by using the image measure of A
under the map ’ygl : R™ — W for a given orthonormal basis £ in W, which is given by
Ao~vg. Indeed, if we spell out the definition of the right-hand side of (2.14), we find it
to be the limit of

/ B f (5! (@) plex) dM(z) = / e =W f(y) o(evp(y)) AN o vE) (y)

n w

as ¢ — 0, for any ¢ € §*. Since |yr(y)| = ||y|| for all y € W, this identity shows
that a Fresnel integral on W, as defined in (2.14), is the limit of a sequence of ordinary
integrals on W of the form

| 1 @) oplen) dro ve)(a) (2.15)
w

where ¢g := ¢ o yg. Hence, in comparison with the initial definition (Definition 1) of
oscillatory integrals on R™ as limits of ordinary Lebesgue integrals of the same form as
(2.15), the notation dz in Fresnel integrals on W can be seen to be connected to the
image measure A\o~yg, exactly in the same way, as the notation dx in oscillatory integrals
on R™ is connected to the Lebesgue measure \. The importance of this difference can
be seen in the following example.

Example 1 (Fresnel integral on R™ with a different inner product). Let us consider
the case, when W is given by the Euclidean space R, but equipped with the inner
product given by the prescription (x,y)4 := (Ax, Ay)gn, where A is a real invertible
n x n matrix. In view of Definition 3, we can write down the following Fresnel integral

on W= (R",{(-,-)a) .
/ eﬁ‘Az‘zf(x) dx (2.16)
(

R™, () a)
but as we shall see in a moment, despite its similar form, it is not exactly the same as
k3 2
Jan 20142 £(2) d as introduced in Lemma 2, which is due to the different meaning of
dzx in oscillatory integrals over different spaces.

— 15—
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If {e;}7; denotes the Euclidean orthonormal basis in R™, then E := {A~ e},
forms an orthonormal basis in (R™, (-,-) ), and the map g is given by A. Therefore,
by definition, expression (2.16) is equal to [f,, eZ_irJ‘””‘2f(A’1:c) dz, which by Lemma 2
satisfies equation (2.6), i.e. it holds

/ e f(r)de = |det A | €% f(z)do
(R™, (-, 4) e

In view of the above remark, this result is not a huge surprise, since the image of the
Lebesgue measure A on R™ under the map 7]51 = A~! equals Ao A = |det A| \.

It is only a technicality to extend Theorem 1 to the case of oscillatory integrals on
general finite-dimensional inner product spaces introduced in Definition 3.

Proposition 2 (Cameron-Martin type formula IT). If W is a real inner product space
of dimension n < oo, then any [ € F (W) is Fresnel integrable, and it holds

/ eﬁ”znzf(x) de = (27m'p)"/2/ e_%p”mwduf(z) (2.17)
w w
where ||z|| = (x, z>%2 denotes the induced norm in W and p > 0 is arbitrary.

Proof. By assumption, there exists iy € .# (W), such that f = jiy. By the unitarity
of g, it holds (v;'(2),y)w = (z,7e(y))r~ for all x € R™® and y € W. If duy = hdv
denotes the polar decomposition of 117, then

fovp'(x) =/

ez‘(w?(m)ﬂ)wh(y) dy(y):/ T2 (v (2)) d(yev)(2)
w

n

where ypv == v o' is the image measure of v under . Since |(ho~5')| = 1 and
~gv is finite, this shows that f o fy]gl € Z(R"™) and Theorem 1 therefore implies that
fo fygl is Fresnel integrable and moreover

“2

h(vg' () d(yev)(2)

n

/O e ™ f (vt (@) dw = (2m'p)n/2/ e~ 4l

The left-hand side is the definition of the Fresnel integral of f over W and, since the
integral on the right-hand side equals [, e_%”f”ﬂzh(z) dv(z), this proves the claim. O

From Theorem 1 and Proposition 2, we can see that the absolute value of Fresnel
integrals—at least on the Fresnel class—grows exponentially with the dimension of the
underlying space, e.g. for f = 1, we have | f];n ei|z|2dx| = 71™/2, Since we want to define
infinite-dimensional oscillatory integrals by approximating with finite-dimensional ones,
we need to find a suitable normalization in order to get finite results. It turns out, that
a good choice is, to give the oscillatory integral of f = 1 the value 1.
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Definition 4 (Normalized Fresnel integral). Let H be a real separable Hilbert space
and let Z(H) denote the collection of all monotone increasing sequences of orthogonal
projections P,, onto finite-dimensional subspaces of H, which converge strongly to the
identity, i.e. P,z — x as n — oo for all x € H. Moreover, let
Zyp, = /O e 717 gy A7) (9 p)dimPa(i)/2 (2.18)
Pn(H)

and for any function f on H, whose restriction® to P, (#) is Fresnel integrable in the
sense of Definition 3 for each n € IN and all (Pp,)new € Z(H), set

_ ° EATpTE:
Fo(f) = 2,5 /P (H)ezpn 1, 3o () de (2.19)

If the sequence (Fp, (f))nen is convergent for all (P )new € Z(H) and p > 0, and if its
limit is independent of the choice of (P, )nen, then we say that f is Fresnel integrable
and the limit

Fp(f) = lim F7 (f) (2.20)

n—oo

also denoted by

/ e 1o £(2) dz (2.21)
H

will be referred to as the (normalized) Fresnel integral of f.

In the finite-dimensional case, F%,(f) is just a normalized version of the Fresnel
integral of f, introduced in Definition 3, because when dim H < oo, for any sequence
(Pn)nen € P(H), there is some N € N such that P,, =1 for all n > N.

Apparently there is a slight notational confusion in the term Fresnel integral. In
the following, if the underlying space is finite-dimensional, then we will use oscillatory
integral, which refers to the unnormalized Fresnel integral of Definitions 1 and 3, whereas
in the infinite-dimensional case, we will stick with Fresnel integral, since in this case it
is clear that it refers to Definition 4.

The following theorem states the final Cameron-Martin type formula for the Fresnel
integral on a general real separable Hilbert space H. The original result was given
in [12, 3C], but there it is only shown for the special case when H is given by the
Cameron-Martin space H: (see section 2.4). We provide a shorter proof, solely based
on Definition 4, and Proposition 2.

3Tn the sense that the subspace Pp,(H) is considered to be canonically embedded in .
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2  OSCILLATORY INTEGRALS

Theorem 2 (Cameron-Martin type formula III — final version). Let H be a real sepa-
rable Hilbert space of either finitely or infinitely many dimensions, then each f € F(H)

is Fresnel integrable on H and its normalized Fresnel integral is given by

/eﬁl\mlﬁf(x)dx — /e—%”llzlﬁduf(x) (2.22)
H

H

where iy is the complex measure on H, that satisfies iy = f.

Proof. In the finite-dimensional case, the claim is just a restatement of Proposition 2

dim#/2 " which is now part of the Fresnel integral.

without the constant (27ip)

If H is infinite-dimensional, we choose an arbitrary sequence (Pp,)nen from F2(H)
and let H,, denote the finite-dimensional subspace P,,(H). In order to see that functions
of the form f,, := fly, for f € Z(H) are in the corresponding Fresnel class % (H.,,),
we may introduce the following notion (applying the reasoning in [7] on positive image
measures to complex measures):

Claim (complex image measure). Let F': X —'Y be a measurable map between two
measurable spaces (X, A) and (Y, A"). If u is a complex measure on (X, A), then the set
function on A’ given by o F~' is a complex measure on (Y, B), called the (complex)

image measure of p under F. Moreover, for any bounded measurable function g on'Y

it holds
/gd(qu‘l) = /goFd,u (2.23)
Y X

Proof of the claim: The countable additivity of uo F~! follows from the countable
additivity of p, the measurability of F' and the properties of the preimage. More pre-
cisely, if { B, }2°; is a countable partition of B € A, then {F~1(B,)}5°, is a countable
partition of F~1(B) € A and therefore po F~Y(B) = u(F~Y(B)) =3, p(F~1(B,)).
Hence po F~! is a complex measure on (Y, A").

By definition, equation (2.23) holds for each characteristic function g = 1g with
E € A’ and by linearity it extends to simple functions. Since the positive measures |u|
and |y o F~1| are finite, any bounded measurable function g is integrable with respect
to pand po F~1,

By linearity of (2.23), we only need to consider g > 0, because the general case
of g being complex-valued is obtained by decomposing ¢ into its real and imaginary
positive and negative parts. Since the simple functions form a dense subset with re-
spect to pointwise convergence in all non-negative measurable functions, there exists a
monotone increasing sequence of simple functions (g,,)32; converging pointwise to g.
Hence by the theorem of dominated convergence, the right-hand side of (2.23) equals
Jx(go F)hd|p| =limy, [y (gn o F)hd|p|, where dp = hd|p| denotes the polar represen-
tation of p. For the g, we already have established equation (2.23), so this shows
Jx goFdu=1lim, [, g,d(uo F~1) and by applying the dominated convergence theo-
rem again, we see that this limit equals the right-hand side of (2.23). O(claim)
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Proof of the theorem: Using the claim on the projections P, : H — H,, we obtain
for any =z € H,

Jul@) = F(Pua) = / P )y () = / P gy () 2 / A dpp (2)

H H Hn

where pif,, := py o P, denotes the complex image measure of py under P,. Hence
fn € F(H,) and therefore by Proposition 2, f,, is Fresnel integrable on #,, and

Zp—;/ e#llwlﬁfn(z)dz:/ ef%nzn?dﬂf’n(z):/ef%nmzn?dw(z)
RRVET] H H

n n

Since the integrand in the very last integral is bounded by 1 and |pus|(H) < oo, we can
apply Lebesgue’s dominated convergence theorem to take the limit lim,, .7:{;” (f) inside
of the integral. Any (P, )nen € L (H) converges strongly to the identity and therefore
we have ||P,x| — ||z| as n — oo, which on the one hand shows the independence of
the limit from the choice of (P, )nen, i-e. f is Fresnel integrable on H, and moreover
this proves equation (2.22). O

One property that can immediately be seen from the Cameron-Martin type formulas
(2.11), (2.17) and (2.22), is the fact that F?}, is a bounded linear functional on the Fresnel
class % (H), equipped with the total variation norm || f|| = ||| (section 2.2). Indeed

(2.22)
1P (O < pgl(H) = (L] (2.24)

Hence || F} || #(2)—c = 1, since for f =1, the value 1 is attained.

As mentioned earlier, Theorem 2 establishes the link between the initial definition
of infinite-dimensional oscillatory Fresnel integrals by equation (2.12) as is given in [3],
and the more recent one from [12], by means of approximations with finite-dimensional
oscillatory integrals.

2.4 Application to Quantum Mechanics

In this section, we will show how normalized Fresnel integrals over suitable Hilbert
spaces of paths can be used to construct solutions to the Schrédinger equation for a
non-relativistic point particle in a Fresnel class potential.

More precisely, we consider the Hamiltonian H = Hy + V', where V denotes multipli-
cation by a potential V € .7 (R¢) and H, generates the free evolution of a non-relativistic
particle in d dimensions.

In order to prevent distraction caused by unnecessary constants, throughout the
thesis we will stick with natural units, i.e. e =h=1. Thus Hy = —A/2, where the
Laplacian is taken on its natural domain of self-adjointness D(Hy) = H?(R?), the
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second order Sobolev space on R? [35, Theorem 7.8]. Since V is bounded, it follows for
example from Kato-Rellich, that H is self-adjoint on D(H) := D(Hy) = H?(R?).

For the construction of a rigorous Feynman path integral formula based on the
normalized Fresnel integral in Theorem 3, we need to introduce a proper Hilbert space
of paths, the so called Cameron-Martin space H;.

Definition 5 (Cameron-Martin space). For >0, let H'(0,¢;R?) denote the Sobolev
space of square integrable R%-valued functions x on (0,¢) with square integrable first
order weak derivative 2’. Due to the Sobolev embedding theorem in one dimension,
any x € H'(0,t;R?) can be represented by an absolutely continuous function on [0, #].
Thus

Hy = {2z € HY(0,t;RY) | z(t) = 0} (2.25)

defines a linear subspace of H'(0,t;R?), called Cameron-Martin space. We equip H;
with the inner product®

(Z,y)e = (@9 )20, re) = /[ ]<w'(8),y'(8)>m ds (2.26)
0,

The fact that H; is indeed a separable Hilbert space is shown in the following result,
which certainly can be found somewhere in the literature, but instead of searching for
a proper reference, let us just give a proof by ourselves.

Proposition 3. For each fized t > 0, the Cameron-Martin space H; equipped with the
inner product (2.26) forms a real separable Hilbert space.

Proof. First of all, the induced norm ||-||%, = (-, ~>i/2

is weaker than the norm inherited
from H', since ||lzl|F, = |27 < [|z]|7. + |27 = [|=[|3.. As a subspace of the
separable normed space H', H; is separable with respect to ||-|| 1 by itself and therefore
is also separable with respect to the weaker norm || - ||3,. Moreover, H; is closed in the
H'-norm, because it is the preimage of {0} C R? under the linear map = + z(t) from
H'(0,t;R%) to R?, which happens to be bounded: To see this, let z € H' and t,, € [0,1]
be chosen such that |z(tm,)| = minge[ |z(s)|, which exists since any z € H'(0,¢; R¢)
is bounded due to the Sobolev embedding theorem. Then absolute continuity gives

)] < latta)l+ [ @ <7 [latolas+ [ s

m

4The only property which is not inherited directly from the inner product in L2([0,t], R?) is the
implication (z,z) = 0 = = = 0: By the absolute continuity of x and the initial condition z(t) = 0, we

have for any t' € [0,t], z(t') = z(t) — f[t/ . z'(s)ds = 0, whenever ||z’||,2 = 0.
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By setting C; := max{t'/2,t=1/2}, after applying Hélder’s inequality, we obtain
|z(t)] < C¢ (||#']|z2 + ||z]|z2)- Due to the convexity of the square function, we have

@ zl2) 2
2 (1l B0 < a3+ ol = ol
Hence |z(t)| < V2C; ||z|| g for any € H([0,t],R%), so the linear map = — z(t) is
bounded and therefore continuous. Finally, as a closed subspace of H', H, is complete
with respect to || - | g1 and thus also with respect to the weaker norm || - |3, O

The following two examples show, how we can construct finite-dimensional projec-
tions on H;, which are needed for the definition of the normalized Fresnel integrals on
H;. These results are indicated in [12] and [36] without providing a full proof.

Example 2 (Orthogonal projections on H;). For a family {r; ;V:O of points in [0,
with 7; < Tj+1 and 19 = 0, v = t, let m denote the corresponding partition of [0, ]
consisting of intervalls [1;,Tj41) and {t}. Moreover let Py : Hy — H; be the linear map,
sending x to the piecewise linear function on [0,t], which has its nodes only in the T;
and satisfies (Prx)(7;) = x(1;) for all j =0,...,N, i.e. we have

N—-1

(Pea)(s) = 3 (zc(m n M()) oo (227)

=0 Ti+1 = Tj
for all s € [0,t]. Then Py is a finite-dimensional orthogonal projection on H,.

Proof. First of all, it is clear that H] := P, (H:) is finite-dimensional, since it can be
identified with the space of all N-tuples (¢; );V:Bl with &; € RY, by setting &; = x(7)).
Next, let us show that P, is bounded:

T2 (Tj41)
|Pal? = Z / )

(Tj+1 — TJ =0 TJ+1

7_
N-1 ‘ It ds|

where we used that any x € H; is absolute continuous. By Holder’s inequality, we have
fT’“ |2/ (s)|dz < (f:j”l |2'|2)Y/2 (1541 — 74)/?, and therefore

Pl < Z / [ (s)Pds = [

Hence Py is bounded on H, with || P;|| < 1. The idempotence P? = P, follows directly
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from its definition, and for self-adjointness, we find for all x,y € H;

N eri ) _ .

(z, Pry)r = / '(s) - (—y(T]H) y(TJ>) ds
=0/ Tl T
N-1

J

— ZO ﬁ /T:HI </:j+1 2 (s) -y (u) du) ds
_ 3 / <M> y(w)du = (Pra,y)
0“7

Ti+1 = Tj

where we used Fubini’s theorem and absolute continuity again. This finishes the proof
of P, being a finite-dimensional projection on H;. O

Example 3 (a suitable sequence of projections). For a monotone increasing function
N : NN — N, let {mn}nen be a sequence of partitions of [0,t], with each partition
consisting of |m,| = N(n) intervals, such that

—

{TJTI};V:(S) = {TJnJrl};V:(ngl) , Api= max (7] -7} =

j=1,...,N(n) 7

3
o

<
|
—
—
3

where 7" € [0,t] denote the endpoints of the intervals in m,,. With these choices made,
the monotone increasing sequence of projections, given by (Pr, )nen, as was defined in
Ezample 2 converges strongly to the identity, i.e. it is in P (Hz).

Proof. For x € H, N C?([0,t]) and any partition 7 of [0,t], we have

[Pz — |2 = /t Nf (w—x’(s))n (s) s
" R j=0 Tj+1 — Tj 7T

and by Taylor’s theorem in Lagrange form, for each 7 =0,...,N —1

2'(s) = @' (15) + R;j(s) , a(7jp1) = 2(75) + 2/ (75)(Tj31 — 75) + Qj(Tj41)

1"

where R;(s) = ' (u;)(s—7j) and Q;(7j+1) = = é”j) (Tj+1—7;) for suitable u;, v; € [0,].
Thus, the integrand of (2.28) is given by

N—

—

2

(U s = ) = )5~ 7)) Uy )

0

<

for all s € [0,t]. By the triangle inequality, this is bounded from above by

N-—1 2
( Z C |Tj+1 - Tj| 1[Tj77j+1)(s))

=0
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where C' := 2 maxco,q 2" ()| = |2" (vj)|/2 + |2" (u;)| for all j =0,..., N — 1. Hence,
setting A := max; |7j+1 — 75|, we've got

N-1N-1 +
HPTI':L'_:EHtQ < 02 T]-{-l Tz-‘,—l T)/ ]l[Tj,Tj+1)ﬂ[Ti,Ti+1)(S) dS
j=0 =0 0
N-1 N-1
= C*) (1 —7) < CA D (i —7) = C*A%
j=0 j=0

For the partitions 7,, defined above, we therefore obtain || Py, x — z|; < O\t A,,, which
converges to 0 as n — oo, for all x € H; N C?([0,1]).

Since C°°([0,t]) is dense in H'(0,t) with respect to the H'-norm, and |z|; <
2|l 10,6y for all @ € Hy, also H, N C?([0,]) is dense in H; with respect to || - [|¢.
Therefore, we can carry over the result to the whole of H;, by performing a usual
denseness argument: Let ¢ > 0 and for a given 2 € H;, choose y € H; N C?([0,]) such
that ||z — y||+ < /3. Moreover, let ng € IN be big enough, such that || P, v —yll+ < /3
for all n > ng (by the above result). Then, by the standard ¢/3-method, we obtain

2 1
1Pr, 2 = zlle < |1 Pr (@ = 9)lle + I1Pry = ylle + lly — 2lle < ge+ e =e

for all n > ng, where we used || Py, || < 1. Hence P, converges strongly to the identity
in H; and therefore belongs to &2 (H,). O

In the rest of this section, we will state and prove Theorem 3, which, as noted before,
is the main result of Chapter 2, and properly interpreted, provides a rigorous Feynman
path integral formula for solutions to the Schrédinger equation for a non-relativistic
particle experiencing a Fresnel class potential, in terms of a normalized Fresnel integral
on the Cameron-Martin space H;. Therefore, we will refer to (2.29) below as Feynman-
Fresnel path integral, FFPI for short.

Theorem 3 (FFPI). If p € F(RY) N H2(RY) and V € F(R?) N C?(RY) is real-valued
with 0%V € L*(R%) for all « € N with |a| < 2, then for anyt > 0 and all £ € RY, the

function on Hy, given by

o s e—ily Vie(e)+€)ds o(2(0)+€) (2.28)

belongs to F (Hy). If ]-'fiﬂ i the case p =1, is denoted by Fi, then by setting

Gul€) 1= Fifw o T I VEHOL G(5(0) 46) ) (2.29)

we obtain 1y € H*(RY) for all t > 0. Moreover, the strong derivative of t v 1y exists,
and Py forms a solution to the Schrodinger equation

dyy
St — iy, (2.30)

with initial datum o = @, and H = Hy +V, D(H) = H*(R%).
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In order to see that (2.29) has indeed the form of a Feynman path integral, we
recall that in our case, the classical action along a path y € H'(0,#; R?) is given by
S(y) == fot (ly'(s)|?/2 = V(y(s)))ds. Therefore, by the definition of the inner product
on Hy, (2.29) informally reads

Bi(E) = /H 56O o (2(0)+€) d

where x + £ denotes the path s — 2(s) + & (with endpoint £). Thus () informally
takes the form of a path integral as introduced by Feynman in [13].

The statement goes back to the pioneering work of Albeverio and Hoegh-Krohn [3],
but their justifications are very short and miss a lot of details. Succeeding work on the
topic (e.g. [12]) filled in some of the gaps, but for the taste of the author of this thesis,
it still was a lot of work remaining unfinished.

We split up the whole proof into several intermediate results, and put them together
at the end of the section (p. 45). References are given at the respective assertions,
whenever they exist.

We start with the following Lemma, which provides two basic measure-theoretic
results, which are taken from [22], and will serve as a preparation for a construction
(which is due to [10]) of functions belonging to certain Fresnel classes in Lemma 5. Tt
is then a simple application of that statement, to show that (2.28) belongs to .7 (H;)
for all t > 0.

Lemma 4. Let (X,A) and (Y, A") be measurable spaces and let n be either a non-
negative o-finite or a complex measure on (X, A). For n-a.a. x € X, let v, be a complex
measure on (Y, A") such that for any B € A', x — v,(B) is measurable. For E C X XY
and x € X, let E®) denote the x-section of E, i.e. E® = {y €Y |(z,y) € E}.

(i) If 0 is a bounded A ® A'-measurable function on X XY, then the function on X
given n-a.e. by x — [, 0(x,y) dv.(y) is A-measurable.

(ii) If there exists h € L*(X,n), such that ||v.| < h(x) for n-a.e. x € X, then the set
Junction on A® A’ given by u(E) = [ ve(EW®) dn(z) is a complex measure on
X <Y with ||p|| < ||h]|g1(x,y). Moreover, we have the Fubini-type formula

/x(/ye(x’y)d”””(y)) diy(z) = /Xxye(fc,y)du(w,y) (2.31)

where 0 is any bounded A @ A'-measurable function on X x Y.

Proof. The structure of the proof is as follows: In the first step, we consider the special
case of O(z,y) = L g (y) in (i). More precisely, by using the Monotone Class Theorem
given in [17, §6 Theorem B|, we will show that for any E € A® A’, the function fg
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given for n-a.a. x € X by fr(r) := v,(E®) is A-measurable. The usual procedure
of extending the result first to simple functions, then to positive measurable ones and
finally to the general case by considering positive and negative parts will finish the proof
of (i) in step 2.

For the proof of (ii), the assumption ||v,| < h(z) will be of central importance and
will allow several applications of the dominated convergence theorem.

Step 1 — measurability of fg: UM :={F € ARA’| fg is measurable} is a monotone
class (i.e. if it is closed under the limit of monotone sequences), which contains the
algebra R of all measurable rectangles A x B with A € A and B € A’, then by the
Monotone Class Theorem, it follows that M contains the o-algebra generated by R,
which coincides with the product o-algebra A ® A’.

If Ax B € R, then we have (A x B)(®*) = B whenever 2 € A and (A x B)®) = () for
x # A and therefore v, ((A x B)®)) = v, (B)1 (). Since by assumption, x — v,(B) is
measurable, this shows R C M.

To show that M forms a monotone class, let (Ey,),cn be an increasing sequence in
M and let B := U2 | ), denote its limit. Then for any x € X, the sequence (E%I))nem
is also monotone increasing and it holds E(®) = Uj’f:lE)(f). The usual continuity of non-
negative measures with respect to increasing sequences also holds for complex measures,
since it only relies on countable additivity. Thus fg(z) = lim, fg, (z) for n-a.a. z € X,
i.e. fg is the pointwise limit of measurable functions and therefore is measurable by
itself. Hence M is closed under the limit of monotone increasing sequences.

It is then completely analogous to show the closedness under limits of decreasing
sequences, whereas in this case the continuity of v, follows from the continuity under
limits of increasing sequences and its finiteness (but the finiteness of v, (E,) for one
n € IN would have been sufficient).

Altogether, we have A® A" = ¢(R) = M and therefore 2 — v, (E*)) is measurable
forall Ee A® A

Step 2 — proof of (i): For indicators over measurable sets from A®A’, (i) already was
established in step 1, because for any F € A® A, we have 1g(z,y) = 1z (y). By lin-
earity it directly extends to simple functions. For bounded A® A’-measurable functions
0 > 0, let (0,,), be a monotone increasing sequence of simple functions converging point-
wise to 6. If dv, = gd|v,| is the polar decomposition of v, then |0, (z,v)g(y)| < |0l
justifies the application of the theorem of dominated convergence in the integral

/Y 00, y) dva(y) = lim [ 0(2,y) dva(y)

n— o0 Y

since || is finite. Hence x — [, 0(x,y) dv,(y), as a pointwise limit of measurable
functions, is A-measurable. The complex case then follows by decomposition into real
and imaginary positive and negative parts.

Step 3 — 1 is a complex measure with ||p|| < ||h]|1: Forall E € A®A’, the measurable
function on X given n-a.e. by x — v, (E®) is in L'(X,n), since v, (E®)| < ||lv.] <
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h(z) by assumption. Hence |u(F)| < oo for all E € A® A’. For countable additivity,
let {E,}22, be a countable partition of E in A® A, then {E,(f)};’f:l is a countable
partition of E@ and |3V Ve (ES| < |lvall < h(z) for any N € N and n-almost
all z € X. Thus, by the countable additivity of v, and the theorem of dominated

convergence
£ [ () o) = 3 [ B ante) = Yo,

Hence p is a complex measure on (X x Y, A® A’). Moreover, for a countable collection
{En}22, of disjoint measurable sets in A ® A’ and any N € IN, it holds

> Il Z/ (B dll (@ /Zm B di )

By the definition of the total variation measure |v,|, we have ) |1/I(E7(f))| < [|vz]| and
therefore SN |u(En)| < [y lvall dinl(z) < ||B]|1(x.). Again by the definition of the
total variation measure, this shows [|u|| = [u[(X) < ||h||L1(x )

Step 4 — Fubini-type formula: First, we notice that due the assumption ||| < h(x)
for n-a.a. x € X, we have | [, 0(z,y) dv.(y)| < ||9HOO (x) for any bounded A ® A'-
measurable function 6, i.e. the function x — [, 0(z,y) dv,(y) addressed by (i) now is
even in L'(X,n).

For indicators § = 1, where E € A® A’, equation (2.31) reduces to the defintion of
1, and by linearity it extends to simple functions. If 6 is bounded and measurable, then
let (0,,)22; be a monotone increasing sequence of simple functions converging pointwise
to 6 and let du = g d|p| be the polar representation of . Due to |0, (x, y)g(z, y)| < |0l
and the finiteness of ||, the theorem of dominated convergence gives

0dy = lim 0n dp = lim /Hn:c,y dvy(y) )dn(x
| du=tim [ b=t [ ([ 6 don))anto)

As above, for n-a.a. x € X, we have | [} 0, (2,y) dva(y)| < ||0]|ch(x). Again, the as-
sumption h € LY (X,n), |0n] < ||0n]lco, and the finiteness of || allow us to apply the
theorem of dominated convergence twice in order to take the limit first inside of the
outer and then inside of the inner integral:

/Xxyed“:/x (nIL%LHn(x,y) dyx(y)) dn(z) :/Y</X9(x,y) dyx(y)) dn(z)

By linearity of (2.31), decomposing into real and imaginary positive and negative parts
extends the result to the case of general bounded measurable functions. O

Lemma 5 (a construction of Fresnel class functions). Let H be a real separable Hilbert

space, (X, A,n) a measure space, where 1 is either a o-finite non-negative or a complex
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measure let d € N, and for i = 1,...,d let ¢; : X — H be measurable functions,
where H is equipped with the Borel o-algebra B(H). If {vi}zex is a family of complex
measures on R%, such that x +— v, (B) is measurable for every Borel set B € B(R?),
then the function x «— ||v|| is measurable. Further, if U, denotes the Fourier transform
of vo and if & = ||Dg|| g gay s in L'(X,n), then also x — 0p(((y, ¢j(x))j=1,....a) is in
LY(X,n) for each y € H and moreover, the function on H, defined by

fly) = /X Do ((y, d1(2)), - -, (y, da(®))) dn(z) (2.32)
belongs to F(H) and satisfies || f||z) < [y ||[ve| dn|(z).

Proof. As mentioned above, this result is due to [10] and most of its proof relies on
Lemma 4. In the following, let Co(RY) denote the space of continuous functions f on
R? vanishing at infinity, i.e. for every € > 0 there exists a compact set K C R? such
that |f(x)] < e for all x ¢ K.

Step 1 — measurability of x — ||v||: By the Riesz-Markov Theorem [31, 6.19], the
dual space Co(R?)*, consisting of all bounded linear functionals on the Banach space
(Co(RY), || - |loc), is isomorphically equivalent to the space of regular complex Borel
measures on R?, which coincides with the space M(RY) of all complex Borel measures,
as it is the case for any metric space [27, p.27]. More precisely, the isomorphism ¢
between .7 (R%) and Co(R%)* is given by ¢(u) : Co(R?) — C, f + [pa fdp for all
p € A (R) and it satisfies |[|o(u)| comay- = l1llzray- Thus, if By denotes the unit

ball in Co(R%), then

vell = sup |p(ve)f]
feBy

for any x € X. By (i) of Lemma 4, the functions = fRd fdv, = ¢(v,) f are measurable
for all f € Cy(R?). Tt is a corollary of the Stone-Weierstrass Theorem [11, 2.4.11], that
Co(R?) is separable and therefore the unit ball B; contains a countable set D, which
is dense in the sup-norm. Thus z = |[[vz| = sup;cp |p(vs)f], as the supremum of
measurable functions over a countable set, is measurable by itself.

Step 2 — measurability of x — 0, (((y, ¢j(x));j=1,....a): First, we apply (i) of Lemma 4
again, to show that (z, k) — 0y (k) = [z e dv,(u) is A® B(RY)-measurable. The role
of (Y, A’) in the Lemma, here is played by (R¢, B(R?)), and if we define v, 4) = v,
for all k € RY, then for (X, .A) replaced by (X x R? A ® B(R?)) Lemma 4 applies to
0((z,k),u) := e’ and so, it proves the measurability of 7, (k) as a function of (z, k).

Now, since by assumption the functions ¢; are measurable, for each fixed y € H
the map « — 0, (((y, ®j())j=1,....a) can be represented as a composition of measurable

functions and therefore is measurable.

Step 8 — construction of p with f = f: Due to Lemma 4 and the additional as-
sumption on the function z — |1, | = |04 #®ay of being in L'(X,n), the set function
p on A® B(R?) given by p(E) = [y vs (E®@)) dn(x) is a complex measure, and it holds
ol < [y llvall dnl(z). Now, we are ready to construct the complex measure p on H
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with the desired property 1 = f. If we define a measurable map F between X x R% and

H by F(z,v) ==, v;¢i(x), then p is given by po F~!, the complex image measure®

of p under F'. Indeed
i) = [ €97 dpor 1)) 2 [ cnremdp,
H X xR%
for any fixed y € H and applying (2.31) to 0(xz, v) := ¥ F@V) = 12 vily:0i(@) gives

/(/ eiEivi<y,¢i(w)>dym(v))dn(x)
X N JR4

/X 22 (9, 61(2)). .. . (y. 6a(x))) d(x)

i(y)

which coincides with the definition of f. By the definition of ||-|| # (5, this also completes
the proof of the estimate || f[|l#) = llull < lloll < [x lvell dinl(z). O

As a simple application of Lemma 5, we obtain the following, which is also taken
from [10].

Proposition 4. For ¢t > 0 let H; denote the Cameron-Martin space (2.25). Then for
any ¥ € F(R?) and u € [0,1], the functions f and g on H;, given by

f(@) = y(x(w) , g(x) ::/ P(x(s)) ds (2.33)

belong to F (H,).

Proof. First, for 7 € [0,t], we introduce a family of paths {y:}¢ , C H, with the
property (z,7); = x;(7) for all x+ € H; and i = 1,...,d. More precisely, the j-
th component of v¢ is given by (vi(s)); = (t — s V 7)d;; for all s € [0,t], where
sV 7 := max{s,t}. Hence the jth component of 7 has the weak derivative =614
and we have 7. (t) = 0, 42 € HY(0,t;R%), i.e. yL € Hy for alli = 1,...,d and 7 € [0, ],

and moreover
. t
@t == [ L) 2i(s) ds = ~ai(t) + ai(r) = i(r)
0
We apply Lemma 5 with H = H,, (X, A,n) = ([0,¢], B([0,1]), P), where P is an arbitrary

probability measure on [0,t], 75 = v and ¢;(s) = v for all s € [0,t] and i = 1,...,d.
With these choices, the requirements of Lemma 5 are trivially fulfilled and the function

5Complex image measures were introduced in the proof of Theorem 2.
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(2.32), evaluated at x € H;, is equal to

{2, 7)s--- (2,70)) dP(s) = d(@1(w), ., za(w) P[0,1]) = W (z(u) = f(2)

0,t]
So f belongs to .%#(H:). In order to get the result for g, we make the same choices
as above, except for 1, which is taken to be the Lebesgue measure on [u,t] extended
by 0 to [0,t] and the ¢;, which are now defined as ¢;(7) = ~%. In this case, the only
non-trivial fact we need to check in order to fulfill the requirements of Lemma 5, is
Borel measurability of the ¢;, which is easiest seen by proving their continuity. Let
(Tn)nen be a sequence in [0, ¢] that converges to 7 € [0, ¢], then for each i = 1,...,d

) ] max{7y,T}
=24 = [ L) = Tg(ollds = [ s = 1m ]
min{7,,7}
Hence, as 7, approaches 7, v% converges in (Hy, | - ||+) to 7%, i.e. the ¢; are continuous
and therefore Borel measurable. In this case, (2.32) equals

B2 ) ds = / (x(s)) ds = g(x)

[u,t]

and therefore also g is in F(H;). O

The next result is not found in the literature, but crutial for the proof of Theorem
3. It does not follow from Proposition 6, where it is shown that on the Schwartz space,
Uo(t)|sray = e "M
already have to know that Up(t) is bounded on its domain of definition.

, since for an application of the bounded extension principle, we

Proposition 5 (L?-Boundedness of a special form of Fresnel integrals). If the normal-
ized Fresnel integral .7-'7’; in the case p =1 is denoted by F¢, then for each t > 0 the
linear map Ug(t) on (F(RI) N L2(RY), || - ||2), defined by

Us(t)0)(€) 1= Filw > pla(0)+)) (2.34)
maps into L2(RY), is bounded, and does not exceed 1 in operator norm.

Proof. First of all, as a consequence of Proposition 4, the function on H; given by
x +— o(z(0) + &) belongs to % (H;), whenever p € .Z(R9) and ¢ € RY, since .7 (RY)
is closed under shifts in the coordinates. Hence, the argument of the Fresnel integral
(2.34) is a product of Fresnel class functions and therefore also an element of .% (H;)
by itself.

Now, let {m,}nen be a sequence of partitions of [0,¢] with |m,| = n and let P,
denote the corresponding finite-dimensional projections from H; to the space H;™ of
piecewise linear functions, as they were introduced in Examples 2 and 3. Due to the
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results shown there, the finite-dimensional Fresnel integrals on H;" given by

up(E) = (2mi) "> /H 3171 o(a(0) + £) da

form a pointwise approximation of Up(t)p, as n — oo. In order to compute Fresnel
integrals on , we use the orthonormal basis E in Hj™ given by

J _AJ
i Vg — Vi

—— J Tn
E = {oekE’Ht Qg = TNORER

1<j<d,0<k<n71}

where Agt := t511 — t and ¢ denote the endpoints of the intervalls in m,,. Orthonor-
mality follows directly from the defining property of the 77, i.e. (vZ,x); = z;(7), for any
x € Hyy, 7 €1]0,t] and j =1,...,d (see the proof of Proposition 4). Moreover, by defini-
tion, the ith component of a7 (s) is given by 8;; (75 Vs — 71 V 5)/(Ar7)/2. For s < 74
this equals *5ij(AkT)1/2, while for s € [14, Tit1], (a(5))i = 0i5(s — Thp1)/ (AgT) /2,
and for s < 741, ak( s) = 0. Since H;" is the image of H; under the projection Py,
which is given by (2.27), the jth component of any z € H}™ can be written as

75(9) = (Pra)(s) = kz_;(xj<m>+ﬁ<wj<ml>—xjm)))11[Tk,m1><s>

()

In order to show, that this takes the form of a linear combination of the ai € FE, we
start from the expression S % 1 2 k=0 (ozk, ) o, (s). By plugging in the explicit values
of ak( s), we obtain

d n—1 n—1
; Akx
Z Z<O¢§C, t Oék Z ( S - Tk-‘,—l) ]I[quTk+1)(s) - Akx H[O,Tk)(s))
7=0 k=0 =0

where Agx := 2(7k41) — (7). A small calculation shows

n—1 n—1 /n—1 n—1
Z Apz Ljo,ry = Z (Z Akx) V) = — Z (Akx + x(Tk)) Ly res)
k=0

=0 \k=l k=0

ﬁ:f (8 — Tht1) + Az = ﬁ—:f (s — 1), we obtain the identity
d n—1 n—1 A (%)
k *

ZZ (of 2)ead(s) = D (x(Tk) + —AW(S —Tk)) Ly ey () = ()

=0 k= k=0

which finishes the proof of E being an orthonormal basis of #; ™. Hence, by definition,
ul(€) is given by the oscillatory Fresnel integral on R™?

W) = @m) [ A o) 0) 4 € dy
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where %}1 is the inverse of yg : Hy" — R™, the coordinate map corresponding to E,
i.e. vp(z) = ({(a,2):) k- Let us switch from this set of coordinates, which are explicitly
given by yl = (Agz;)/(Ax7)/?, to the set of points ny, = z(y) € RY, k=0,...,n — 1.
For this, let A be the nd x nd block matrix consisting of n? square matrices Ay of
dimension d X d, where the only non-zero blocks are given by Ay = —(Akr)_1/2ld and
Apry1 = (Ap7) Y21, for all k = 0,...,n — 1 (I denotes the identity matrix on R9).
Then it holds

_ " — "o T — Tln—1 d\m
Alo, -5 1hn-1) = ((AOT)W’“" (An_ﬂ)m) € (&)

where 7, := 0. By Lemma 2, changing variables from y to n gives

n—1 o

ap(€) = (mi) /2 T (Apr)=2? / 4147 oo 1 €) di

k=0 (Rd)n

If p € S*(R?) (= SN{¢| ¢(0) = 1}), then the product ¢®"(n) := ¢(1n0)d(n1) - - - ¢(Mn—1)
belongs to S*((R%)™) and therefore qualifies to be used in the definition (Lemma 2) of

the oscillatory integral f(‘;Rd)n 214 o(ng + €) dn. Hence, for each & € R, ur(€) is the
limit of

n—1 ) ,
uPe(€) = A,;l/ (H o5 k1] /Am) B(enn—1) - d(emo) @(no + &) dn
(RH)™ \ g=¢

as € — 0, where we have set \,, := (27i)"4/2 HZ;& (AxT)¥/2. Since the absolute value
of the integrand in this expression has the function ||¢||so|¢:|®™ € L'((R%)™) as upper
bound (¢.(z) := ¢(ex)), we are allowed to apply Fubini’s theorem in order to obtain

u?,s(g) _ /\7_11 /]Rd e%f—mn,12/An1T¢§(xnl)(/Rd e%|fEn—1_In,72‘2/An72T1/}§(xn72)

. </d e%zl102/A071/1§(z0)<p(:c0)d:co) ~~~dxn2>d:cn1
R

after setting ¥¢(zy) = d(e(zx — &)) which satisfies [|¢¢] s = [|¢]/oo for all € > 0 and
¢ € R?, and applying the change of variables z, = n, + & forall k =0,...,n—1. As we
can see, several instances of the integral kernel of the free propagator are showing up in
this expression. Indeed, denoting the kernel of e~**Ho on L1(RY) N L%(R?) by K(z,v),

i

which is given by (2mis)~%/? esle=vl*/s for any s > 0, we find
u"(§) = / Ka, 7 (& an )¢ (zn 1) (/dKAof(xlny)wg(-’EO)s0($0)d$0> coedrn g
Rd R

and since for any f € L?(R%), the product ¥ f is in L'(R%) N L2(R%), and e~*° maps
into L?(R%) as well as ¢ € L%(R?), we obtain

upe(€) = (eI g emiBnmaHo gt L (AN ) (g)
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for all ¢ € R?, where ¢¢ denotes multiplication by the function ¢ itself. Without loss
of generality, we can choose [|¢]lcc = 1, i.e. [[$)f]loc =1 for all ¢ > 0 and £ € R?, and

thus it follows from the unitarity of e~**Ho

[ ll2 < [I8ll% lellz =Nl Ve>0, vneN

Using the definitions of u;”® and u}, and applying Fatou’s Lemma to the families of
non-negative functions given by (£ +— |uf’8(€)|2)€>0 and (£ — |uf(£)|2)n€]N, we find

1Uo(gllz < timinf [l < liminf (loinf [u]2) < [l

which holds for all ¢ € .#(R9) N L%(R?) and therefore proves Uy (t)p € L*(R?) as well
as [[Uo(8)]| < 1. O

For the proof of the next assertion, we follow the reasoning in [12, Corollary 4A],
under the slightly modified case of Hy only consisting of the Laplacian, instead of an
additional harmonic oscillator term, which is considered there. Moreover, we directly
prove the result for d dimensions, instead of restricting to d=1.

Proposition 6 (Fresnel integral representation of the free propagator). Fort > 0 and
any Schwartz function ¢ € S(RY), it holds

Uo(t)p = e Mg (2.35)

where Hy = —A/2 and Up(t)$(&) = Fi(z — ¢(x(0)+E)) for all & € R is the bounded
linear map on .F (R N L2(R?) defined in Proposition 5. Hence, by the bounded exten-
sion principle and the denseness of S(R?) C L2(RY), it follows Uy(t) = e~ **Ho on the
whole space .7 (R%) N L2(RY).

Proof. Since on the Schwartz space S(R?), the Fourier transform is a bijection onto
itself, for ¢ € S(R%) we can choose 1 € S(R?), such that ¢ = ). Ifvs € He,i=1,...,d,
are defined as in the proof of Proposition 4, then

B((0) + &) = / ot i i@ o) eiéCw(O d¢ = JRICH DTN eiECw(O d¢
Rd Rd

The Borel map between R? and Y := span{yi}%_,, given by F(¢) := Zle Gy s

injective, and the i-th coordinate function of F~1 is given by F~1(y); = t~1 (i, y) for

all y € Y, where the factor t=! is due to (v$,77)r = t 8;;. Hence

o) +€) = [

eI Dy ) dvo () = [ e duty)
Y

Y

where A\ denotes the Lebesgue measure on R?. Extending the complex measure p to
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the whole H; by 0, allows us to apply Theorem 2 to the right-hand side of (2.35):

File s 6(x(0) +6) = /Y6’%”1“’”361'“”@%(17*(y))d(AoF*)(y)

_ /e*%IIF(C)I\feiécw(QdC: eiCe 21y (¢) ¢
R4

R4

Thus, if we denote the Fourier transform on S(RY) by F, then this shows
Filw s 9(2(0) +€) = (FoMepymoF 16)€) = ("))

for all ¢ € R?, where Mexp(_z_tuz) denotes multiplication by the function eI o

The following Proposition forms another key ingredient for the proof of Theorem 3,
but has not been proven rigorously in the literature. The fact that Proposition 5 is the
special case of Proposition 7 with V=0, allows us to extend our ideas from there.

Proposition 7 (L?-boundedness of the FFPI). For V € .F(R%) and any t > 0,
(UW)() = Fo(w s o7 R VEDTOE o (a(0) 4 ¢)) (2.36)

forms a bounded linear map from F(R?) N L*(RY) to L*(RY), with |U(t)| < etl#l,
where 1 € M(R?), s.th. i =V.

Proof. As a consequence of being a Banach algebra, % (H;) is closed under pointwise
exponentiation, i.e. for f € .Z(H;), also z — exp(f(z)) belongs to .Z (H;) and together
with Proposition 4, we see that the argument of F; in (2.36), is a product of Fresnel
class functions and therefore an element of % (H;) by itself.

As in the proof of Proposition 5, we can express U(t)¢ as the pointwise limit of a
sequence (uf)n N of finite-dimensional Fresnel integrals on the spaces H;™ of piecewise
linear functions. Just as in that proof, it follows that for each n € IN and all £ € RY,
up(€) is the limit of

R

n—1
- (H e§|77k+1771c|2/Akt> et f(;‘ V(zy(s)+E&)ds ¢®n (67]) 90(770 + 5) dn
]R n

k=0

as € — 0, where x,(s) is the piecewise linear function on [0,t] having its nodes only in
the points t, i.e. if we set i, = 0, then

n—1

S — tk
xy(s) = E (77k + m(nk—kl - nk))1[7k77k+1](s)
k=0

and ¢ € S*(RY) (= S(RY) N {¢|p(0) = 1}) with ||¢|lsc = 1. Performing the change of
variables xy := ni + £ for all £ = 0,...,n and splitting up fot V(zy(s) + §)ds according
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to the partition of [0,¢] consisting of Ij, := [tx, tx+1), gives

n —1 V(Tn_ +tsit7"71 —Zp_1))ds
ue () = RdKAn—lt(E’xn—l)e S, Vnatg = (€ 1)) V& (@nr)

( dKAOt(‘Tla‘TO) ~i1y Vim0t =i (o1 m(’))dswg( 0) ($0)d$0>md$"_1
R

where K, (z,y) denotes the kernel of e =70 on L}(R%)N L?(R?), and ¢¢ := ¢(e(- —&)).
In order to proceed, we observe the following: For any fized T € R, u,t € Ry with
u<t, and I :=[u,t],

(Tf)(SC) — . Kf(x,y) efifl V(y+i= (z—y))ds f(y) d’y

defines a bounded linear map T : L*(R%) N L2(RY) — L?(R%Y) with ||T|| < elt=ulnl,
where p € M(R?), s.th. i = V. Indeed, since

> C0 ke [ [V

k!
k=0

—y))---V(

£ (@ y))ds - dsi S (y)]

is bounded from above by (27|7|)~%/2elVi<lt=ul|f| ¢ LY (RY) for all N € IN, we are
allowed to apply the theorem of dominated convergence, in order to obtain

Kr(x,y)/// / eizf:1<y+stl:5(z—y)).alx
k! - RN

x f(y)dp(an) - dular) dsy - - - dsy dy

o0

-5

k=0

Since |p|(RY) < oo, |I| < oo and f € L*(R?), by applying Fubini’s theorem, we obtain

Tiw) = 3 k,/ //R /R (= o)

k=0

([ Bty et B =) ) dy) dp(ar) - dyu() dsy - - d

2 n AT it

k=

0
 [emimro (O ) O Y] @) dtan) - dulan) dsy -+ ds

Hence, by using the notation o = (av, ..., ax) € (RY)* and s = (s1,...,s3) € I¥,

1N < 55 [, fn

where A\¥ denotes the Lebesgue measure in R*. Let g, s 1= ’e’”HU (e“zgc 1)t )f)‘

_“_HO (Zl il ) ()f)}(x)‘ d|u|®k(06) d)\k(s)
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which satisfies ||ga.s|/oo < (277)7Y2| f|l1, as well as ||ga.sll2 = ||f|l2. Another applica-

tion of Fubini’s theorem, in this case to the counting measure on IN, gives

1713

N

- i ﬁ/m /m /(Rd)kga,s(:c)dlul‘g’“(a) dAF(s) x

k,m=0

x / / oo () d|pB™ (0') AN (") dz
m (]Rd)m

> (] )
= - Ga,s(T)gor s () dz
k,mZ:O k!'m! /[k /m /(]Rd)k /(]Rd)m Rd ( ) ( )

dlu|®™ (@) d|u|®* (o) AN (s") dA* (s)

o o ()M .
< Y TSI = el

k,m=0

This proves both, Tf € L?(R?) for any f € L' N L?, and |T| < el*~*ll#ll, By applying
this result n times to the above expresson for u;"“(£), we find

n,a|

]|y < etlllﬂlle(@*tl)”#”...e(tftnfl)”l"HHSQHQ _ et”“”HcpHQ

where we used that ¢S f is in L' N L2 for any f € L?, and ||¢¢||cc = ||¢]lc = 1. Hence,
by Fatou, ||U(t)p|2 < liminf, o liminf. o [juf%||s < etl*l||o|s, for any ¢ € Fn L2
Thus, for each t > 0, U(t) maps into L? and is bounded, with ||U(t)|| < el O

Next, let us switch to a different topic, which we will also need the proof below.
Adopting the notation from [35, 4.1], let S(I, L?) denote the linear space of L?(R%)-
valued simple functions on a given compact intervall I C R, where as usual, a function
is called simple, if its image is finite, f(I) = {h;}", C L*(R%), and the sets f~1(h;)
are Borel measurable. Moreover, let R(I,L?), the space of regulated functions, be the
completion of S(I, L?) with respect to the norm || f||oo := sup,c; || f(£)]]2-

On R(I,L?), the L?-valued Riemann integral is defined by using the bounded ex-
tension principle on the integral of simple functions [35, 4.1]. We have the following
simple result.

Proposition 8 (pointwise evaluation of L*-valued Riemann integrals). If 1 € R(I,L?),
then for a.e. £ € R, it holds

(/ﬂ@dt) © = / ((1)) (€) dt (2.37)

I
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Proof. In the case when v is simple, say f = >_}_, hyl;, with {hk}}g | C L3(RY), the
statement follows directly from the definition of its integral, [, f(t)dt = Zle | Tx| P
For the general case of ¢ € R(I, L?), choose a sequence ( fn)ne]N of sunple functions
approximating ¢ in R(I,L?), i.e. ||y — fallco — 0 as n — co. Then [; 4 (t)dt is (by
definition) the L2-limit of f I fn(t)dt. Due to the Riesz-Fischer theorem, we can find
a subsequence (fy, )men, such that (f] frn (t)dt)m converges also pointwise, i.e. for

a.e. £ € RY,
i ( [ funtt dt) ©) = ( [ v dt) ©

By assumption, also || fn,, (t) — ¥ (t)||]2 — 0 as m — oo, uniformly in ¢. Hence, another
application of Riesz-Fischer allows us to choose a subsequence (Vg)ren C (fn,, )men,
such that for all ¢ € I, (¢(2)) () = (¥(t))(€) as k — oo, for a.e. £ € R?. Finally,

([ewi)@© = jm {( [wera)o} = jm [@oy©w = [ @)@

for a.e. £ € RY, where the last equality follows from the fact that (z/;k()) (&) forms a
sequence in S(I, C) converging pointwise to (1(¢)) (). O

In the literature on the Fresnel integral and its application to the Feynman path
integral, many authors like to refer to the Dyson expansion of unitary propagators given
in [28, Theorem X.69]. But the problem is, that the Dyson expansion given there cannot
be directly applied, since it has a slightly different structure than it is needed. Even
though, it might be possible to somehow derive the needed expansion from there, the
author of this thesis couldn’t find a way to do so. Hence, we just prove the required

statement from scratch.

Proposition 9 (a Dyson-type expansion). For any V € L¥(R%, R) andt > 0, let V (t)
denote the composition efoVe=tHo on L2(R?), and for all s,t > 0 define a sequence
(An(t, 8))nen of bounded linear maps by

t
Aq(t,s)p = go—i/ V(t1)edty,

An(t,s)p == Au(t, s)p // / (t1) - V(te)pdty---dty, (n>2)

where the integrals are understood as Riemann integrals of Banach space-valued func-
tions on the real line, as considered in Proposition 8.

Then the sequence (A,(t,$))nen i convergent in operator norm topology, and
its limit A(t,s) defines a two-parameter family (A(t,s))st>0 of unitary operators on
L*(R%), which are jointly strongly continuous and satisfy A(r,s)A(s,t) = A(r,t) as
well as A(t,t) = 1 for all v,s,t >0, which means that (A(t,s))st>0 forms a unitary
propagator on L*(R?).
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Moreover, if we set A(t) :== A(t,0), then for allt >0 and any ¢ € L*(R?),

LAty = ~iVinAg (2.38)

where Z—J;(t) i=limp—o 3 (f(t+ h) — f(t)) denotes the strong derivative of an L?-valued

function t — f(t), whenever the limit exists.

Proof. Step 1 (Convergence) — For any measurable L%(R%)-valued function h on R
and a,b € R with a < b, it holds || [ h(t)dt|ls < [7[|h(t)]2dt [35, p.113] and thus,
from the unitarity of e~"Ho for all t € R, it follows

n k k
[4ntt, 90— At syl < 32 LT g,
k=m+1
for all n,k € IN, s,t > 0 and ¢ € L2(R%). Hence A,(t,s) — Ay (t,s) is norm bounded
from above by Y27_ .\ [t — s[¥[|[V||% /k!, which shows that (A, (,s))nen is a Cauchy
sequence in the Banach space (L(L?(R%)),|| - ||) of bounded linear maps from L?(R%)
to itself, and thus converges to some A(t,s) € L£(L?).

Step 2 (Continuity) — Strong continuity of A(t, s) reduces to strong continuity of
A, (t, s) for each n € IN, since it is preserved under operator norm convergence. Let us
first show, that for a given ¢ € L*(R?) and a map T : R x R — L(L?), for which both
s+ T(to,s) and t — T(t,s0) are strongly continuous whenever to, so € R are fized, the

map

¢
Iu:R%LQ(]Rd),t»—)/ T(t,s)pds

is continuous for any uw € R. For this let € > 0 and without loss of generality assume
to > u. We are free to choose an arbitrary constant R > ty and to restrict ¢ to vary in
[u, R]. If T'(s,t)p = 0 for all s,t € [u, R], then nothing is to be shown, hence we assume
T(s,t)p # 0 for at least one combination of s,t € [u, R]. By continuity of ¢ — T'(t, ),
for each s € [u, k] we can find 6(s) > 0 such that |T'(Z,s)¢ — T'(to, s)¢ll2 < 5
whenever |t — tg] < §(s). Setting

—1
81 := min 8(s), &= (2 T(t, )
1= min (s), 02 e 1T s)ellz) <
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where J5 is well-defined by assumption, we obtain

|| 7u(t) — Tu(to) ||, < H /tt T(t,s)pds ,+ H /uto (T(t,s)cp - T(to7s)<p) dsH2

< [t —tol max, Tt 9)¢|l, + [to —ul x| |T(t,s) — T(to, s)¢|,

€ |to —ul
< 525,32ﬁ)fR]HT(t’s)‘pH2 T3 |127u|

whenever [t — to| < ¢ := min{dy, d2}. This shows the continuity of I,, for all u € R.
Since e~ o and thus also V(s) are strongly continuous for all s € R, it’s a direct
application of this result, that A;(¢,s) is separately strongly continuous, where in this
particular case T'(t,s) = V(s) for all £ € R. Moreover, each of the iterated integrals
in the kth term of A, (¢, s)¢ can be written in the form of I,,, where, when seen from
the ¢ variable, u plays either the role of s or of one of the ¢;, and when seen from the
respective integration variable, then u is given by t. Thus each term in A, (¢, s)y is
separately continuous in s and ¢, and so is A, (¢, s)p for each n € IN by itself, which in
turn translates to separate strong continuity of A(t,s). For any S, T > 0, it holds

o [t — s[*|[V]I, lt—sll[V] S+ V]
At < Y —fF—= = < B
k=0 ’

for all (s,t) € [, 5] x [-T,T], which shows that A(t, s) is locally uniformly bounded.
As was proved in [16, Theorem 2.2], given that the rest of the properties of a unitary
propagator are fullfilled, then joint strong continuity is equivalent to separate strong
continuity together with local uniform boundedness.

Step 3 — Next, let us show that for all s,¢ > 0, it holds A(s,t) = A(t, s)*. Due to
its boundedness, we have A(t,s) = A(t,s)** and therefore it is enough to consider the
case s < t. For this, we use the property [35, (4.10)] of Riemann integrals of Banach
space-valued functions f : R — X, that for any linear functional [ € X* we have

l(f;f(t)dt) = f;l(f(t))dt. Applied to I = (p,-), we get

(Aa(s,t)0,0) = (i) +i / TVt )t = (b) — i / V()Y dis
(An(s, ), @) = (Ai(s,t)h, ) + Zz’“/ﬁs /ts~~~/:<V(t1)~~~V(tk)¢,ga> dty - - - dty,

= (¢, A1(t, s) + n(,l)k ! tk... " O, V(L) V(t)) dty ---dt
( o)+ et [T [T v viee)

where we used that V' is real valued and therefore V' (¢) is symmetric. If we relabel the
integration variables t¢1,...,; in the kth term of the last expression to tg,...,t;, and
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if we use the identity 1y ,,)(tj11) = 1p, ., ¢(t;), then we obtain for the kth term

H)k/ / Doy (t2) -+ Loy () (0, V(E1) - V(tr) ) dti - dta
= (—i)k/ / ]l[tZ,t](tl)"']l[tk.,t](tkfl)<1/),V(t1)"'V(tk)<p> dty, - - - dt;
(_Z)k/ /t /t <w7v(t1)"'v(tk)90> dty - - - dty,

Therefore, we find (A, (s, 1)1, ) = (1, An(t, s)p) for all P, ¢ € L2(R™) and n € N. By
continuity of the inner product, the same holds true for A(t, s), hence boundedness of
A(t, s) allows the conclusion A(t, s)* = A(s,t) for all s,t > 0.

Step 4 — Now, in order to prove A(t,s)A(s,r) = A(t,r), for any r,s,t > 0, let us
first show, that for r < s <t and any N € N, it holds

An(t,s)An(s,r) = An(t, ) + RN (L, s,7)

where Ry (t,s,r) is a bounded linear map with |Ry(t,s,7)|| — 0 as N — oco. For all
@, € L?(R?), the inner product (1, Anx(t,s)An(s,7)p) equals

N

t t t s s s
Z(—i)k+l// / / / / f(81,...,Sk,T1,...,Tl)dT1"'d?“ldSkHAdsl
S Sk so Jr T 72

k,l1=0

where f(81,...,8k,71,...,77) i= <1p, Hle V(si) H§:1 V(rj)<p> and k,! = 0 denote the
very first term in the definition of Ay. For any family of complex numbers (ax,1) (k,1eq
where @y denotes the square [0, N] x [0, N], it holds

g Qpg = E apg + E Qg
QN TN

Qn\TnN

and Ty denotes the triangle {(k,1) € Qn |k +1 < N}. We will show below, that the
second term in this splitting, when applied to the sum above, gives rise to the map
Ry (t,s,7), more precisely, the second term will be given by (¢, Ry (t, s, 7)).

Strictly speaking, the notation in many of the following steps do only make sense
when k£ > 3, but for smaller k£ the computations involve less factors and therefore are
much simpler. Also, they can easily be reduced from the given ones by neglecting the
additional terms which do only exist for bigger k.

The sum ) ;. can also be written as Zszo Z?:o o k—j. Renaming integration
variables in each of the iterative integrals, from (s1,...,s;5,71,...,7%—;) to (t1,...,tx),
in other words, for fixed k and j, setting t; := s; whenever ¢ < j and t; :=r;—; for
7+ 1 <7<k, gives for the sum over Ty

N . k t t t s s s
Z(*Z) Z/ / / / / / F@1, .o te) dtjpn - - - dtgdty - - - dt
k= j=0vs Ji; to Jr Jity t

0 Jit+2

N t t
= Z(—i)k/ / CE ot te) f(t, .. t) dty ... dty,

k=0

-39 —



2  OSCILLATORY INTEGRALS

where we are allowed to interchange integration order, due to the boundedness of the

integrand and the finiteness of the product spaces [r,#]*, and we also have set
k
Craa(ty,ooooti) =Y Ly (t) Ty (1)L je ) () Lt 0 (B+1) -+ Ly o) (Erm1) L o) ()
=0

whenever £ > 1, and Cg,s,t = 1 (but as pointed out, for k = 0, there are no integrals
present and the whole expression is just equal to (1, ¢)). The first two terms in this

sum are given by

Lty (01) Lpag,s) (B2) -+ Lty ,0) (Crm1) Do) () + Lo,y (81) L tg,) (B2) - - Lty ) (Eo—1)E ) (Ek)
= (Lptg,s)(t1) + Lo,y (t1)) Lirg,e)(t2) -+ - Ly ) (b1 o) (E1)
= Loy, (1) Lieg,0) (B2) - Loy ) (B—1) L) ()

and thus, we claim that the first j terms can be combined to

Ligey (1) - Lpgy ey (E—1) e,y () - gy (Br—1) L) (1) ()

where j = 2,...,k. For j = 2, this is the expression, we just calculated. Assuming,
that this holds for some j, then the sum of the first j + 1 terms equals

Lpg,ey(t1) - Loy (=) Ly 0,00 (E5) - L) (Eom1) L) ()
+ Lpog,ey(B1) - Ly 0y (5= 1) Lis ey () L1 o) (Bir) o+ Lty o) (Bo—1) Ly ) (E0)

= Ly 0)(ta) -+ n[tjﬂf)(tjfl)n[twrlvf)(tj)‘ﬂ[tpr%s)(tj+1) w0 (B—1) L) ()

and thus the claim holds also for the first j + 1 terms. By induction, this shows that
(%) is true for all j = 2,..., k. Hence, by writing (¥, ; as the sum of the (k + 1)th term
and the first k& terms, it follows

Cra(tny oo ti) = Ty (t1) -+ Ly (b 1) Dy (t) + Ly (b1) -+ Ly (brm1) e 1) ()

= ﬂ[fzyt)(tl) e ﬂ[tkvt)(tk—l)n[r,t)(tk)

Plugging this back into (x) and defining Ry (¢, s,r) as proposed above, we obtain
<1/}a AN(ta S>AN(Sa T><p> - <"/)7 RN(ta S, r>@>

N t t
Z(—i)k/ / CE o (b ti) Ftr, o ) b . di
k=0 r r

N

S (=i / / / WV () V) dts - -dts = (0, An(t:7)¢)

k=0

for all ¢, € L?(R%). It remains to show, that Ry(t,s,r) converges to 0 in operator
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norm, as N — oo. We have

| r|k+l ||V||k+l

t— o
Ry (t.5,7)¢], < . z>§\T Hi Il
) N N

Since QL%J C T, the difference Qn \ T is a subset of Qn \ QL%J’ and therefore

N 2 [N/2] k °
[t — "t V& [t —r|* VIS [t=r"IV]se | ||V||
Z k!l < ; k! Z

(k,DEQN\TN

The difference on the right-hand side converges to 0 as N — oo, because the sequence of
squared partial sums (Zszo [t— r|k||VH’§O/k:')2 is a Cauchy sequence (since it converges
to e2lt=rllVll<) . Thus, we have || Ry(t, s,7)|| — 0 as n — oo, which completes the proof
of the claim stated at the beginning of this step. Concerning the limit N — oo, by
using that Ay (t,s) is uniformly bounded (in N), ||An(t, s)| < elt=slIVl~ ¥N € N, and

converges in operator norm, we obtain
| An(t, 5)An(s,7) — A(t, 5)A(s, 7)]|
|An(t, s)(An(s,m) = A(s, 7)) || + || (An(t, ) — A(t,s)) A(s, 7) ||
< el =Vl | An(s,m)p — A(s,r)|| + || An(t, ) — A(t, s)|[|| A(s, 7)|

which converges to 0 as N — oo. Therefore, from the previous result, it follows for all
r,s,t € [0,00) with r < s < ¢,

A(t,s)A(s,r) = lim An(t, s)An(s,r) = I\;lm An(t,r) + Iégnoo Rn(t,s,7) = A(t,7)  (7)

N—o0

Next, let r = ¢ > s, then the computation leading to equation (x) still holds true, but
in this case ¢, ,(t1,...,tx) =: ¢, (t1,. .. t)) is given by

k
Z Ty (t1) - D (G- Ly (E) L sty (B41) - L) (B 1) D s ()

Jj=

and very similar to above, we obtain that the first k terms add up to

gy (tr) - Ly (Fm1) L s, (E1)

which, except for the sign, equals exactly the term with j = &, and hence nyt = 0 for
all k > 1. Therefore, in the sum over T, only the term k& = 0 survives. This shows

(0, An(t,8)An (s,0)p) = (¥, 0) + (¢, BN (L, 5))

where Ry (t,s), defined in the same manner as before, also converges to 0 in operator
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norm (proof is identical), and therefore
A(t,8)A(s,t) = lim An(t,s)An(s,t) + lim Ry(t,s) = 1 = A(¢,t) (i4)
N —o0 N—oo

for all s,t € [0, 00) with s < . So far, we have shown the identity A(t, s)A(s,r) = A(t,r)
in the cases t > s > r and r =t > s (equation (i) and (ii), respectively). These can
be used to prove the result for all the other combinations of r,s,t > 0: Applying
step 3 to equation (i) covers the case r > s > t. By using A(s,r) = A(s,t)A(t,r) and
A(t,s)A(s,t) =1 for r >t > s, we get

A(t,s)A(s,r) = A(t, s)A(s, t)A(t,r) = A(t,r) (i4)

and another application of step 3 proves the identity for s > ¢ > r. For the only
remaining case, i.e. t > r > s (and its reverse), we observe, that interchanging r and ¢
in (4i7) gives A(r, s)A(s,t) = A(r,t), which is just the adjoint of A(t, s)A(s,r) = A(t,r).

Step 5 — Unitarity of A(t,s) is now a simple combination of step 3 and 4, because
we have shown A(t,s) = A(s,t)* and therefore A(t, s)A(t,s)* = A(t,t) = 1, as well as
A(t,s)*A(t,s) = A(s,s) = 1, which hold for all s, > 0.

Step 6 — It remains to show, that the L?-valued function, given by f(t) := A(t,0)¢
solves equation (2.38) for any ¢ € L2(R%) and ¢t > 0. In order to calculate the strong
derivative of Ay (t,0)p, we claim: For k,j € N with 1 < j < k < N, it holds

IR

i th ﬁk)(pdtl d

dt tjit1 J1;

= / dt/ / tl tk)(pdtl dtjfl)dtj

for all t,tj41,...,tx = 0 (for notational reasons, tx1 := 0). For this purpose, consider

7

()

the difference quotient

</ / -V(tk)go dty--- / / Vv t1 tk)cpdtl -dt J>
tj+1 ti+1
= / Dy, </ / Vv t1 tk)(pdh dtj_1> dtj + gbh(tj-o—h .. .,tk)

+1

J

where we use the abbreviation Dy, f(t) := +(f(t + h) — f(t)), and

t+h t+h t+h
/ / / V(tl)---V(tk)cpdtl"'dtj_ldtj
t t; to

CHIRL bRt . .
< WISl gy [ [ [ dneddt < VI ol

By assumption j > 2, so this shows that ||@p(tj41,...,tk)||2 = 0 as h — 0. Moreover,
forming the inner product of an arbitrary ¢ € L?(R?) with the first term of the above

Héh(tj"rla s 7tk)||2 = m

2
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expression for the difference quotient, gives

J,

Dy </ / <1/),V(t1)---V(tk)gp>dt1---dt]-1) dt,

h can be assumed to vary only in a bounded intervall of the form [ = {s € R : |s| < R}
for some R > 0. In order to find an h-independent upper bound for the integrand, we
perform j — 2 times the same calculation as above. Then the integrand takes the form

t t 1 t+h
[ 3] wven- Ve di + N,

where |Np| — 0 as h — 0. Hence it is bounded by [t[7=2||V||*||¥|||¢]l + suppes | Nal
uniformly in A € I, and therefore, by the theorem of dominated convergence, we are
allowed to take the limit A — 0 inside of the outer integral. By continuity of (1, -), the
limit passes also the inner product, and since 1) € L?(IR?) was arbitrary, this completes
the proof of (x).

For j = 1, by the fundamental theorem of calculus (which holds true for Banach-
space valued Riemann integrals [35, p.113]), we find for 1 < k < N and ¢,to, ..., tx > 0,

d t
S V) Viedn = VV()- Vit

Next, let us use this together with (x) on each term to find the strong derivative of
An(t,0)p. For N =1, it is given by —iV (t)p, and for N > 2

%AN(t’OW = —iVite / V(£)V (ta)e dts
) . g e (%)
" 2<;N / / / - V(te)pdt dty,

= —iV(t)An-_1(t,0)p

where the notation is such that the sum over 2 < k < N is only non-zero for N > 2, and
we have used f Ah(t)dt = A f h(t)dt for any bounded linear map A, which (again)
can be seen by formlng the inner product with an arbitrary ¢ € L?(R%),

(o [ anwar) = [ avnoyae= (4o, [ wwar) = (v.a [ ne

Now, from expression (xx), it immediately follows that S AN(t,0)p converges locally
uniformly in t to —iV (t)A(t,0)p, as N — oco. Indeed,

Hv(t)ANfl(t,O)SD* V(t)A(t,0 sDH 1V oo Z ||VH’“ tk
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and the exponential series is locally uniformly convergent. This also implies, that for
any 1 € L?(R%), the sequence given by (1, %AN(t, 0)p) = %(w, An(t,0)p) converges
locally uniformly. Therefore, by the theorem of term-by-term differentiation of locally
uniformly convergent series [19, p. 333, %(w, A(t,0)p) is the limit of %<w, An(t,0)p)
as N — oo, hence

d . . .
(¥, 2 A0)p) = lim (v, =iV(H)Av-1(t,0)p) = (v, =iV (D)A(t 0)¢)
Since 1 € L2(RY) was arbitrary, this completes the proof of A(t)¢ being a strong
solution to (2.38). O

For the application of Proposition 9 in the proof of Theorem 3, it is required that
A(t) leaves the domain of H, which is given by H?(R), invariant. This will be shown
in the Lemma below, which couldn’t be found in the literature either.

Lemma 6. Let V € C%(R%) s.th. 90°V € L=(R?), for all multi-indices o € N?, with
la] < 2, then for any t > 0, the unitary operator A(t), introduced in Proposition 9,
leaves H?(R?) invariant.

Proof. By the Leibniz rule for weak derivatives, ¢ € H2(R%), V € C?(R%) as well as
0V € L*=(R?) for |a| < 2 imply Vi € H2(RY).

In order to see that V (t)p is in H2(R?), where V (t) = oV e=Ho we could just
use the fact that e "0 D(Hy) = D(Hy) = H?(R?) [35, 5.1], but for the proof of A(t)p €
H?(R%) we need an explicit estimate on || D*(V (¢)p)||, D denoting the weak derivative.
For this, we first observe that F(V (t)p) = e 2 " F(V(t)), where po(t) := e~*Hop and
F denotes the Fourier transform on L?(R%). Indeed, FF = (27)~¢ R, and therefore also
F1F~! = (2m)?R, where R denotes the reflection Rf(z) := f(—x), which satisfies
RR =1 as well as [R,e2 "] = 0. Hence

Fetlop—t — FreflPF1F-1 = ReIPR = o3f
From the Fourier characterization of H2(R9), it follows
1DV )2 = [F*FV D)l = [FFVeo@®)lz = [ID*(Veo(t))ll

The Leibniz rule implies [ D*(Vgo(t))ll2 < Xg 5/</al (g) 10978V || oo | DP o (t) |2, and
by performing the same steps as above, ||D%pg(t)]|2 = [|k*@||2 = ||[D*p]||2. Hence, by
setting Cv := max|q|<2 | D*V||o, and from 37 5 (g) = 2lel we obtain for all t > 0

[ID*(V(H)e)lla < 4Cv lrél‘égllD%llz (%)
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Since for all |a| < 2 it holds ||[D%p||2 < ||¢|l 72 < 0o, (*) implies for any k € IN
ID*(V(t) - Vte)e)lla < 4" CF ol 2 (wray

By using the variational characterization of the L? norm, we find

’Da/ / / V tl tk)cpdtl dtk

V tl tk)tpdtl dtk,8“g>’

9€C°° ||g||2 1

C ” - /(V t1 tk)<p78 g> dty -+ - dtr
9€C5%,llgll2=

< / / / | Da tl (tk)(p, >|dt1 e dt
geCE® ,||g||2 1
oz o ke F
S [ v Vel an e < 405 Dol
0 Jty to ’

Let (An(t))new be the defining sequence of unitary operators, approximating A(t), as
introduced in Proposition 9. The previous calculation shows, that Ay (t)¢ belongs to
H?(R?), and moreover || DAy (t)¢||2 is uniformly bounded in N. Explicitly,

«a 4kcktk 4Cvt
ID*An(B)ella < E o lella < e le)me
k=0

which holds for all N € IN. Therefore, from |[(A(t)p,0%g)| = limy, o0 [(D*AN(t)e, )]
and [(D*An(t)p, g)| < eVt g2 for ||g|l2 = 1, it follows

ID*At)pllz = sup  [(A(t),0%) < e''lglm < oo
fecslifl=t
whence A(t)p € H2(RY), for all t > 0. O

This finishes our preparations for the proof of Theorem 3. Even though we will
follow a strategy similar to the one used in [12, 4B], we will come up with a lot of added
explicit calculations and justifications. In particular, the already provided results will
play a key role in the following reasoning.

Proof of Theorem 3. Step A (measures depending on a parameter) — If {15} sejo.¢ is @
family of complex measures in ./ (H;), then maxcpo,4 || 5] < 00, since [0, ] is compact
and each of the ps has finite total variation. Therefore the functions s — ps(B) are
Lebesgue integrable on [0, t], for all Borel sets B € B(H;). It is now easy to see, that
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the set function on B(H:), defined by

(/Ot s ds) (B) = /Ot 1s(B)ds (a.1)

defines a complex measure, since by dominated convergence and countable additivity of
the ps, we have (fot psds)(UnBr) =3, fo s(By)ds. Moreover, by the usual procedure
of extending a result that holds for simple funct1ons to bounded ones, by pointwise

approximation, and (in the case of complex measures) using dominated convergence,

we find
/Htfd(/otusds) - /Ot(/wfdus)ds (a.2)

for any bounded measurable function f on H;, which in the case of f = 1 reduces to
the definition of fot s ds.

Step B — For fixed ¢ € R? and all s € [0,t], let s, s and v, be the measures in
M (H:) whose Fourier transforms are given by

2 p(@(0) +€), e Vie(s) +€) and s et VEWTO gy (b.1)

respectively. With these choices, it follows from Proposition 1, that (2.28) is the Fourier
transform of 1y % k. Therefore, denoting the normalized Fresnel integral ]-Z’:Lt in the case
p =1 by F;, Theorem 2 implies

Gu(€) = Fo(w rr e SV OO0 (0(0) + €)) = /H el ae s )@ (b:2)

Since both V G Z(R%) and any y € H; are continuous, the function on [0,], given by

f(s):=e iV V() du ig continuously differentiable with
f'(s) = iV (y(s)) e~ Jo Vvl v
for all s € [0,¢]. Thus f(0) = f(1) fo s) ds, by the fundamental theorem of calculus.
For the shifted path y(u) = z(u) + &, thls gives
t
e~ o Vet du — 1 _ z/ V(a(s) + &) et Je V@ +o)du g (b.3)
0
which can also be written in the form D(z) = do(x) — i fo fis(x)0s(x)ds. As a direct

consequence of (a.2), the Fourier transform of fo usds evaluated at x € H;, coincides
with fo fis(x)ds for any family of complex measures {iis}sejo4) on H¢. Thus, by the
uniqueness of the Fourier transform and Proposition 1, equation (b.3) gives

t
vy = 5071'/ s * Vs ds (b.4)
0

In (b.2) we need to integrate with respect to the convolution of vy and x, which now

— 46 —



2  OSCILLATORY INTEGRALS

can be expressed in terms of dg, pts and v,. First, for any Borel set A € B(H;), we have
doxk(A) = [T1a(z+y)d(0o x k)(x,y) = k(A) due to Fubini’s theorem and the finiteness
of complex measures. Moreover, this also allows us to interchange convolution with the
parameter integral: For p, {As}sepo,q C # (H¢), we have

(M*/Otusds)(A) :/]IA(:E+y)d(M>< /Otysds)(x,y)

which by Fubini’s theorem can be written as a double integral with respect to p and
fot vsds and by using (a.2), it equals fot(u x 15)(A) ds. Hence, by expression (b.4) and
equation (b.2), we obtain

w(€) = / efénxntd,ﬁ(x)_i/ e 310 a( [y x vy i ds) ()
He He 0
t (b.5)
Fila s olel0)+0) =i [ Fsf)du

where f&(z) = e~ i JuV(a(e)+)ds V(z(u) + &) p(x(0) + £), and we used (a.2) and the
Cameron-Martin type formula (Theorem 2) from the other direction.

Step C (decomposition in time) — If, for a given u € [0,t], we cut [0,t] into two
parts, [0,u] and [u,t], then the integrand in the second term in (b.5), F¢(fS), equals

Foalma o 7T VEORO DV (0y(0) +6) Fur o ple1(0) +22(0) +6)) (4

The following proof of this identity relies heavily on the Cameron-Martin type for-
mula (Theorem 2) and the fact that all involved functions belong to a certain Fresnel
class. It is based on a method used in the proof of [6, Proposition 2.4]. See [12] for
a different proof, which directly uses the definition of normalized Fresnel integrals on
H. as limits of finite-dimensional oscillatory integrals on the space of piecewise linear
functions (Examples 2 and 3).

Proof of (x): Consider the linear map T from H; to the product space H, X Hi—y,
given by Tz := (Tyz, Thx), where Ty and T, are the linear maps on H; cutting z at u
into functions from #H, and H;_,, respectively, i.e.

(Thz)(s) = z(s) —x(u), (Toz)(s):=x(u-+s)

Then, obviously 7o € H(0,u; RY), Thx € H(0,t —u; R?) and (T12)(u) = 0 as well as
(Tox)(t —w) = 0, hence T'(H;) C Hy X Hi—w. Moreover, if we define

x1(s) + 22(0) , s €[0,u]

SZ/HUX/Htfu%/Ht, S(xl,zg)(s){ :cg(sfu) se[u t]

then ST =1 on Hy, TS = 1 on Hy X Hi—y and therefore T is bijective, with 77! = S.
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For any y € H,, it holds
t

@ vl = [ o ds+ [ o) ds

= /u o' (s)(Tyy)'(s) ds + / B 25 (s)(Toy) (s) ds (c.1)
0 0
= (21, T1y)u + (22, T2Y)t—u

and therefore, the inner product on H, X H¢—y, given by (@1, Y1)y + (T2, y2)i—u, satisfies

((x1,22), (Y1,92)) = (T (21, 22), T (y1,y2))e (c.2)

If, for any s € [0, ¢], the measures &, s and v, are those defined in step 1, then we have
fS = G k, where v, := v, * y,, by Proposition 1. Due to the Cameron-Martin type
formula (Theorem 2), it holds

FfS) = /H e~ H1o1E (e, + ) ()

Therefore, by using equation (2.23) and (c.2), we find

Fi(fS) = / e 2 IT 7 (@122 17 d((aw x k) o T71) (21, 22)
HuXHi—u

(c.3)
i 2 i 2
_ / e~ 811 =412 4((c, % 1) 0 T=1) (21, 22)
Hu ><’Ht7u

By performing a shift in the ds-integral inside of the first term in the expression for
FE(x), we find (T~ (a1, 20)) = e~ Jo " V@) ds (2, (0) + £). Hence, by Propo-
sition 4 there is a measure A\, € .# (H:—,,), such that

du(Til(.Tl,.Tg)) = )\u(mg) (04)

for all 1 € H,, and x5 € H;_,. Therefore, by Proposition 1

Mu(@2) BT (@1, 22)) = o *B(T ™ (21, 22))

Since for the Dirac measure dy on H,,, the Fourier transform of §y x A, evaluated at
(x1,22) € Hy X Hi—y, just equals j\u(.’L'g), and due to the uniqueness of the Fourier
transform and Proposition 1, this shows

(60 X A) * (ko T™Y) = (u*kK)oT™! (c.5)
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where we also used the fact that for any u € .#(H;), by (¢.2) it holds

-

R )

He (c.6)

_ / T (@1,22),9) du(y) = ﬂoTﬁl(l‘hl?)
Hi

Before we continue with plugging in (¢.5) in equation (c.3), we need to introduce
complex measures {k7?}z,en,_, and k2, which will be usefull in the further calculation.
If, for all Borel sets A € H,, and B C H;_,, we set

Ki?(A) = / Layy) w2 %20 d(i 0 T71) (y1, y2)
HuXHi—u

wa(B) = / e 31 (o) d(s 0 T1) (31, )
HUXHtfu

then ki? € #(H,) for all zy € Hy—y and ko € A (Hi—y), where countable additivity
follows from dominated convergence and the finite total variation. It is an easy appli-
cation of the method, which we now have used several times, of carrying a result for
simple functions over to bounded Borel measurable ones by pointwise approximation,
to get the identities

[t )

u

/ hiyy) €202 = d(k o T4 (51, y2)
Hu ><’Hf,7u

o (¢.7)
/ 9(y2) drayn) = / 9(y2) e 3191 d(s 0 T (31, 32)
He—w HuXHi—w

for all bounded Borel functions A and g on H, and H,;_, respectively. After using
(¢.5) in (c.3), writing the convolution in terms of an integral on the product space
(Ho X Hi—w) X (Hy X Hi—y) and applying Fubini’s theorem, we get

Fi(fS) :/ / e—%llyll\ie—%l\w#yzllfﬂd}\u(m)d(,ﬁOT—l)(yl,yQ)
HUXHtfu Htfu

From another application of Fubini’s theorem and equation (¢.7), it follows

/ / e w2l diey (yo) dAu (w2)
Htfu Htfu

= / e 21 IEw d(ky % N)(22) = Fiulfio M)
Hi—u

Fi(f5)
(c.8)

where the last equality follows from Proposition 1 and the Cameron-Martin type for-
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mula. The identities in (¢.7) give
Ra(r2) = / et el iy (y)
Hiu
— / ei<z27y2>t7u e—%“yl”i d(ﬂ o T_l)(yl, y2) (69)
HuXHi—u
R
Hu

By (c.6) and the definition of x,

—

W) = [ e @)
:/ ei((I17y1>u+(I27y2>t—u)d(,ionl)(yhyQ) (c.10)
HuXHe—w

= KT w1, 22) = (T (21,22)(0) + &)

Putting together equations (¢.8), (¢.9) and (c.10) gives

]:t(fg) = Fi_u ($2 — 5\u($2)]‘—u ($1 — (p(.%'l (0) + $2(0) + f)))

which, by (c.4), coincides exactly with equation (). Let us remark, that equation (c.9)
shows that the function 25 — F, (21 — ¢(21(0) + 22(0) + &) belongs to .# (H;—,) and
from this result, it is an easy task to show that the function ¢ — F,(z1 — ¢(z1(0) + ¢))
is in .Z(RY). Thus, for each u > 0, the bounded linear map Up(u)—which was intro-
duced in Proposition 5 and shown to be equal to e~ in Proposition 6—actually

maps 7 (R4) N L2(R?) into .F (R?) N L2(RY).

Step D (strong solution) — We can finally use Propositions 5-9, the decomposition
(b.5) and equation (%) to show that (2.29) forms a strong solution of the Schrédinger
equation (2.30). For any t > 0, let U(t) be the bounded linear map (see Proposition 7)
on .Z(R¥)NL?(R), defined in Proposition 7 by the FFPI

—i [tV (x(s s
(UMW) (©) = Fi(w s e VEOHOE 4(4(0) +¢))
for almost every ¢ € R?. By Propositions 5 and 6, it holds for all £ € R¢ and u > 0,

Fulz = o(2(0) +€) = (Uo(u)p) (&) = (e ™Hop)(¢)

This, together with the fact that Ve~ "oy belongs to . (R?) N L2(RY) (remark at the
end of Step C for being in the Fresnel class . (R9), and boundedness of V for square
integrability), allows to write equation () in the more compact form

Fi(fi) = (Ut —u)Ve ") (¢)
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Hence, by using (b.5) and Proposition 8, we arrive at the integral equation

¢

Uty = e oy — z/ Ut —u)Ve oy dy

| % | (d.1)

= eﬂtH“go—i/ U(s)Veﬂ(tfs)H“gods
0

where the second equality is due to the simple change of variables, s = t — u. After
performing N iterations, we obtain

N t t1 te—1 ) . .
Z(—i)k/ / . / e tHoy o=tk —ti)Hoys o o=i(t=t)Ho gy oo dty + Iy
pard o Jo 0

for U(t)p, where k = 0 labels the free propagator term of equation (d.1), and

t t1 tN . .
Iy = / / .. / U(tN+1)V€_l(tN_tN+1)HOV .. -e_l(t_tl)H"(pdtNH oo dty
o Jo 0

Due to ||U(tn+1)| < e!ll*l whenever ty41 < t (see Proposition 7), where u € M(R?)
s.th. o=V, it follows

| tNJrlHV”&Jrl
(N +1)!

N
el ==

[n 2 < et — 0

Therefore, from (d.1), by setting V (s) := e!sHoVe~isHo it follows

N —oo

N t pty tr—1 .
HU(t)%?*Z(*i)k/ / / e OV (E— 1))V (E— t)pdtg - - - dty 0
0 0 0

k=0

2

If we perform in each term of the sum k changes of variables, the new set of variables
being given by s; :=t — tg41-4, j = 1,..., k, then integrating ¢, in [0,¢;_1] is replaced
by s; being integrated in [t — ¢;_1,t] = [si11,t], where [ = k + 1 — j. Hence

Ult)e = i”)k [ / eTHY (1) -V (si)p s - d

k=0

The L2-continuity of Up(t) = e~ o allows it to be interchanged with each L2-valued

Riemann integral as well as being pulled out of the series. Thus, we have found
Ult)p = Uo(t)A(t)y (d-2)

for all p € F(RY)NL2(RY), where A(t) := A(t,0), and (A(t, s))s.¢>0 is the unitary prop-
agator on L*(R¢) introduced in Proposition 9, which satisfies 4 A(t)p = —i V(t) A(t).
Now, under the additional assumption ¢ € H?(R%), this shows that U(t)p € H?*(R%),
because from Lemma 6, we know that A(t)p € H?(RY) and Uy(t) = e o always
leaves the domain of Hy invariant.
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In order to find the strong derivative of U(t)p, let A, B(t) := B(t+h)— B(t), for any
t-dependent linear map B(t). Then, we need to show, that 34, (Ug(t)A(t))¢ converges
in L2(R%) as h — 0, because in this case, by definition,

Yo — 3 M(UoAWD)] 2% 0 (.3)

|&vos-;

We have A, (Uo(t)A(t)) = (AnUo)()A(t) + Uo(t)(AnA)(t) + (AnUo)(t)(ArA)(t), and
for any f € L*(R%),

ApUy AR A

2
Pacan] <2 503 o,
where, in favor of notation, we did omit the ¢-dependencies. Now, let ay(t) be given
by oy := +ApUo, then |lang — LUggllz — 0, as h — 0, for all g € D(Hy) = H*(R?).
In particular, ||ang||2 converges as h — 0, and therefore is locally uniformly bounded
in h, i.e. there is a compact intervall I C R containing 0, and a constant C' > 0, s.th.
supes |langllz < C. Denoting £ A, A by S, since by Lemma 6, A(t) leaves H?(R?)
invariant whenever V' € C?(R%) with bounded derivatives, it follows that for each b’ € I,
there is a constant Cj/, with sup,c; ||an Bn fll2 < Chs, and thus, for all h € I,

AUy AR A
H h=0 Zh fH < sup lapfBrflla < supsup|lanfBu fllz < sup Cp =: C' < o0
hel h'el hel h'el

due to the compactness of I. Hence, from the strong continuity of (A(t)):>o and (d.4),
it follows
1 2 h—0
| Gantodnaf|) < 20+ h)f — AD 2“5 0

Thus, only the first two terms in the above expression for Ap(Up(t)A(t)) contribute to
the limit (d.3). From LUy(t)f = —iHoUo(t) f as well as L A(t) f = —iV (t)A(t) f for all
f € H*(R%), from Lemma 6 and from the boundedness of Up(t), it follows

.1 . : .
lim LA, (DA®)e = —iHUb(O AR — Ta VAR = —iH UH)
where H = Hy + V with D(H) = H2(R?) and Uy(t)V (t) = VUy(t), which follows from

Uo(t) = e~®Ho and the definition of V(). Together with (d.4), this shows that U (t)p
is a strong solution to the Schrédinger equation (2.30).
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3 THE METHOD OF STATIONARY PHASE

3 The method of stationary phase

Usually, the method of stationary phase or stationary phase approximation refers to the
study of the asymptotic behaviour of oscillatory integrals with phase functions depend-
ing on a parameter h € R, that controls the stength of oscillation of the integrand.

In fact, the total cancellation in several regions in the integration domain due to
strong oscillations of the phase factor, is one of the core features of oscillatory integrals.
Making the phase function parameter dependent allows to get control over these oscil-
lations, which then helps to extract the origin of the main contributions to the total
integral.

For example, consider a given oscillatory integral of the form f]Rn en®(@) f (z)dx, with
¢ real-valued, and consider the case when h approaches zero. In regions, where ¢ varies
a lot, the oscillations will be very strong, as will be the cancellations. Whereas, no
or only slight variations of ¢ result in less oscillations, and therefore those regions will
have the most effect on the total value of the integral. As we will see below, the leading
contribution comes from the so called critical set

Cy = {x € R | Ve(z) =0}

3.1 Stationary phase approximation of Fresnel integrals

In the following, if u: H — C is a function on a real separable Hilbert space H, then
we will denote its Fréchet derivative by Du, whenever it exists, i.e. if for each z € H
there is a bounded linear map L, : H — C such that

llAl[—0
T

|u(z + h) — u(z) — Lo (h)| 0 (3.1)

L
IRl
If the limit exists, then L, is unique®, and Du(z) := L.

As simple consequences of this definition, we obtain Propositions 10-12, whose re-
sults have been used in [2] without going into the details of the calculation.

Proposition 10. If p € M(H) satisfies [ ||a|| d|p|(e) < oo, then the function V:=f is
Fréchet differentiable, with DV (z) =i [{a, )" du(a).

81f A, By are bounded linear maps from H to C satisfying (3.1), then for a given € > 0, there exists
6 > 0, such that |[Apu(z) — Azh| < e||h||/2 as well as |Apu(z) — Bgh| < €||h||/2, whenever ||h|| < § and
Apu(z) := u(x + h) — u(x). Hence |[(A — B)(h)| < |A(h) — Apu(z)| + |Apu(z) — B(h)| < €||h]|. So,
dividing by ||h|| shows ||Az — Bz|| < €, where € was arbitrary. Therefore A, = Bj.
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Proof. Boundedness follows immediately from Cauchy-Schwarz’s inequality. Moreover,
it holds |V (z+h)-V —zf a, hyel @ du(a)| < [ e —1—i(a, h)|d|p|(c). Taylor’s
theorem implies e — 1 —it| < r(t) |t| for all t € R, where r is a bounded function on R
with r(t) — 0ast — 0. Thus7 [1eme —1—i(a, hy| d|p|(a) < [ ||lallr((h, a))d|p|(a) ||h]].
Due to the boundedness of r and [ ||a||d|p|(er) < oo, the cla1m follows from the theorem
of dominated convergence and r((h,a)) — 0 as ||| — 0. O

We will also use the second Fréchet derivative, which by definition is the Fréchet
derivative of Du : H — L(H,C), where L(V,U) denotes the space of bounded linear
maps between normed spaces V and U. Thus, D?u is defined as the bounded linear
map from H to L(H,L(H,C)) satisfying

l[~ll—o0

|Du(z + h) — Du(z) — (D*u(x))(h) — 0 (3.2)

1
ol e

Proposition 11. If u € M(H) satisfies [ ||a||* d|u|(a) < oo for k = 1,2, then V:={
is twice Fréchet differentiable, and it holds

DV (@)(y) = — /H (Y, )¢ du(a) (3.3)

Proof. Let r be chosen as in the proof of Proposition 10, then we have ’(Df(x—i—h))(y) -
(Df @) () + [ (o b, y)e’ @D dp(a)| < [ (o)l —1—ifa, h)|du|(@). Tt then
follows from the Cauchy-Schwarz inequality, that

B DV @) =DV @)+ [ (oo n)e ™ du(@)| ) < [ llalPri(as ) dil(@)

The boundedness of r together with [ ||a||?d|p|(a) < oo, allows to apply the theorem of
dominated convergence, which then proves the claim, since r({a, h)) — 0 as ||h|| — 0.0

Proposition 12 IfV = ji € Z(H) is such that [, ||a|*d|u|(a) =: C < oo, then for any
a € H, D?V(a), considered as an operator acting on H (by using Riesz representation

theorem), is of trace class, with trace norm not exceeding C'.

Proof. From Proposition 11 and Riesz representation theorem, D?V (a) may be con-
sidered to be an operator on H such that (x, D*V(a)y) = — [}, (z, @) (e, y)pu* () for all
x,y € H. By [37, 3.22], its trace norm is

|D*V(a)||; = sup{z |(en,D2V(a)fn>| :{entnen, {fntnenwy ONB in H } (3.4)

nelN

and, by monotone convergence,

S ew D2V (@)f)] < /H S ens @) £u) | dlul()

nelN

_ 54—
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From the Cauchy-Schwarz inequality on /2, and Parseval’s identity, it follows

; ;
1DV < [ (X Hema)P)” (X 1nall) dilie) = [ flalPdal)
H S pen neN H
which shows that D?V (a) is trace class and || D?V (a)||; < C. O

For the statement of Theorem 4 below, we need to introduce two more or less
unconnected notions, stationary points of a Fréchet differentiable function on H, and
the Fredholm determinant of 1+ A, where A is a trace class operator on H.

Definition 6 (Stationary point). If a € H satisfies Du(a) = 0, for a given Fréchet
differentiable function u : H — C, then a is called a stationary point of w.

In the case H = R?, the Fréchet derivative of a differentiable function v : R* — R
at z € R, is the linear map given by Du(z) = (Vu(x),-)ga. Therefore, in this case,
stationary points of u are solutions to the equation Vu(a) = 0.

Next, for a trace class operator A on H, we use the following definition of the
Fredholm determinant of 14+ A, which is due to [14]. It relies on the density of finite-
rank operators in the trace class, with respect to the trace norm, and [14, Lemma 3.1],
which says: If (A4,)52, is a sequence of finite-rank operators on H converging to A in
trace norm, then the sequence (det(1+A,,))°2, converges, and its limit is independent
of the particular choice of the sequence (A,)22 .
Definition 7 (Fredholm determinant). For a given trace class operator A on H, let
(A,)52 4 be a sequence of finite-rank operators on H converging to A in trace norm,
then we define the Fredholm determinant of 1+A by Det(1+A) := lim,,_, o det(1+A4,,).

We have now the ingredients in order to state the key result for the semiclassical
approximation of the FFPI in the following section. For the proof, we will give several
intermediate statements, which rely on methods used in [4], [5], [1] and [29].

Theorem 4. Let H be a real separable Hilbert space and u,v € M(H) such that there
are constants C,,,Cy,, e > 0 with

, 5! : 5!
Lebaue) < .5 [ bavie) < .5 (35)

as well as 12C,, < g2, Moreover, let V,g € F(H) be given by V=i and g=0, then the
function ¢ := %|| - ||> =V has a unique stationary point a € H and the Fresnel integral

I(h) = Fl(z e’%v(z)g(z)), for |h|<1 takes the form

I(h) = Det(1-D*V(a))~? e#9(® g(a) + R(h) (3.6)

where |R(h)| — 0 as h — 0.
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Let us add the remark, that we restrict ourselves to the case of a unique stationary
point, by imposing the condition 12 C,, < €. It is however possible to extend the theory
to the non-unique case, where the right-hand side of (3.6) is replaced by a sum over the
set of stationary points (see [2], [1] and [29]). The uniqueness condition is given by the
following Lemma, which is taken from [4, Lemma 2.1].

Lemma 7. If V=p€ Z(H), [|a|*dp/(e) <R for some R <1, then the equation
DV (a) = (a,-) has a unique solution a € H.

Proof. For any z,y,z € H, by Proposition 10,

[(DV(2)-DV (y))(2)|| < /H|<Oévz>||1ei“_y’“\dlﬂl((ﬂ

Using [1—e"| = 2|sin(2/2)| < |z|, we obtain | DV (z)-DV (y)|| < [ llel*d|ul(a) [lz—y].-
Together with the assumption [ ||c|?d|u|(e) < R and R < 1, this shows that DV is a
contraction mapping from H to H* = H. Thus, by Banach’s fixed point theorem, there
is a unique fixed point a € H, i.e. DV (a) = (a, -). O

At some point in the proof of Theorem 4, the following simple result from [1] will
allow us to reduce the problem to finitely many dimensions, by using the definition of

the Fresnel integral in terms of finite-dimensional approximations.

Lemma 8. Let (J,)nen be a sequence of functions on R, let J be defined on R\{0},
such that |Jp(h)—J(h)| = 0 as n — oo, for all h € R\{0}, and moreover, assume that
for each n € N, there is a constant q, € C satisfying |J,(h) — qn| < C|h| for all h € R

and some C > 0. Then (J,(0))nen is convergent, and moreover

[ J(h) = J(0)| < C Al (3.7)
for all h € R, where J(0) := lim, o J,(0).
Proof. By assumption, |J,,(0)—g,| <0, i.e. J,(0) = g,. For € > 0, choose hy € R with

|ho| < €/(3C'), then choose N € IN big enough, such that |J,, (ho)—Jm (ho)| < €/3 for all
n,m > N. Hence

|3 (0) = Jm (0)] < [T (0) =T (ho)| + | T (ho) =T (ho)| + | Jm (ho)—Jm (0)] < 2c|h0|+§ <e

for all n,m > N. So (J,(0))nen forms a Cauchy sequence and therefore has a unique
limit J(0). Inequality (3.7) then follows from |.J,,(h)—J,(0)| < C|h|. O

In the proof of Theorem 4, we will need to calculate finite-dimensional oscillatory
integrals of more general amplitudes than can be provided by the Fresnel class. This
is justified by the following Lemma. Its proof is a slightly corrected version of the one
presented in [1, Theorem 3.1].
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Lemma 9. Let V € C®(R% R) with bounded first order derivatives, ||[VV <00, and
assume all higher derivatives to be of at most linear growth, i.e. for all a € ]Ng, there is
a constant mo>0 such that |0°V (x)| < ma(1+|z|) for allz € RY. Let g € C°(R, C)
be such that there exists p € Ny and Cy,>0 with |0%g(x)| < Co(14|x|?)% for all x € RY
and o € Nd. Then

I(h):= /]Rd eﬁllwlﬁe_%v(z)g(x) dx (3.8)

exists, for all h € R.

Proof. Let (x;)j—0.1 be a partition of unity in R, i.e. y; € C*(R%), 0 < x; < 1 for
7=0,1 and xo+x1 = 1, such that supp(x1) C B(0, %r) and x1|p(o,) = 1, where 7 will
be fixed later. For ¢ € S*(R?), 1. := ¢(e-), consider

I(h,.) = /R de%‘z%*”(z)g(x)wez) dz = Iy(h,v.) + L (h,.)

where I;(h,vc) := I(h,v:-x;) for j=0,1. Since gx1 € L*(R?), from dominated conver-
gence, it follows I (h, V) = [a e2nl2® g(x)x1 () dx as € — 0. For Iy(h,1.), more work
is needed. First, define a : R* — R by

(2 9jp(x) .
aj(x) : No@)[2 Xo(z)

where ¢ := || - |2 — V. We will show, that for any a € IN?, there exists Co, > 0, such
that

00, (0)] <

1+ 1] )

for all x € R%. By the assumptions on V, for any #,7 € N¢ and j = 1,...,J, we
have |080;p| = |0° (x; — 9;V)| < Cs(1 + |z]), as well as |07|Vp|?| < C,(1 + |z])?, for
some constants Cg,Cy > 0. Let ¢ := M/(2 + 3M), where M := ||VV]|s < co. Then
c(1+]z|) < |z|—M for all |z| > 3M/2. Together with |Vo(x)| = [¢—=VV]| > |z|-M,
this implies |V(x)| = ¢(1+]|z|) for all x € supp(xo), if we choose r = 2M. By Fad di
Bruno’s formula, for any o € IN, it holds

o 9 (N 107 050] Tl e |07V
? <|V<p|2)‘ P Z'ﬂ'(ﬁ) N

|BI<|al meIl

where IT denotes the set of all partitions of {1,...,d} and 7 € 7 means that 7 runs
through the elements of the partition 7. Furthermore, 97l denotes the partial derivative

of order |7|, given by [, 0;. Using the above estimates, this shows

JET

9; (L+[a) (L+[a)?™ Ca
(6% < <
0 (|V<P|2) ($)‘ X Z Z Ca,ﬂ,fr (1+|z|)2|7r\+2 1+ |z|

|BI< || mEIT

for all x € supp(xo), and some constants Cy, Cy, g, > 0. Since supp(9«xo) C supp(xo)
and [|0%xo]leo < 00 for all a € INZ, () follows by applying the Leibniz product rule.
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Next, we introduce the first order differential operator L = c—ih 2?21 a;0;, where c
is given by c(z) := x1(z) +ihdiv(a)(z) for all z € R?, and with domain D(L) = S(RY).
By using integration by parts on S(R?), we find the formal adjoint of L with respect to
the L?(R%)-norm to be given by L* = ih 2?21 a;0; + x1. Indeed, for any f € C*°(RY)
and g € S(RY),

d
(9. Lf)> = ~ih Z/ga @+ [aaf= (B3 avg+as.s),
j=1

From the definition of a;, it follows ijl a;0j = 1—x1, and thus Lren? = en®. Thus,
for any N € IN, we obtain

Bhv) = [ eFO LY (g0 ) @) do

By direct inspection, we find that for any v € C*°(RY) and z € R, LN u(z) takes the
form SN AN (2)0%Fu(x), where AY is a finite sum of terms, each term bein
k=0 2u|ay|=k "o k g
proportional to a multiplication of N functions, where each factor is either given by
X1, aj, for some j =1,...,d or one of their derivatives. From this, we can see that
AN (2)0%* (gx0) belongs to L*(R?): The terms containing x1 or any of its derivatives
have compact support and so are in L'(R%). The N factors of each of the remaining

terms are therefore of the form 9“a; for some o € ]Ng and j =1,...,d. Now,
=Y 3 [ N @ e b
k=0 |oy|=k

and by (x) and the assumptions on g, there exist constants cy 4 and dy 4 such that
each of the integrands is bounded by

(1 + |=[*)P2

(1+ |z|)N + dn,g x1(2)

CN
CN,g +dngxi(z) < ( i

1+ [z[)N=P

which belongs to L!(R%), whenever N—p > d. Hence by choosing N > d+p, and by
using the theorem of dominated convergence, we see that lim._,q Io(h, ) exists and is
independent of ) € §*. More precisely

tim Iy (h Z 3 / NN ()0 (g(1—x1))(@)dz  (3.9)

k=0 |ay|=k
since from the chain rule, it follows [0%¢. ()| < el®! ||0%4)]|o for any o € INZ, and so,

for all x € RY, lime_,0 0%(fv.)(x) = 0% f(x) ¥ (0) = 0% f(z) for any f € C*(RY). O

Based on Lemma 9, we are now able to provide a Fubini type theorem, which under
certain conditions allows to interchange the order of ordinary with oscillatory integrals.
The proof is taken from [1, Corollary 1.7].
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Proposition 13 (Fubini type theorem). Let m be a complex measure on a measurable
space X, and let g : X x R? — C, such that for each fived ¢ € X, g(&,-) € C*(R?) and
Vo € Nd e, > 0 so that V€ € X, Vo € RY,

10%9(€,2)| < cal(1+|2]?)P/?

for some p >0, and moreover assume that g(-, ) is bounded for all x € R? (hence it is
m-integrable). Then the function on R?, given by G(xz) := [y (&, x)dm(&) is Fresnel

integrable, and
[t awar= [ ([ ot yenar) an (3.10)
R4 X R4

where, by Lemma 9, f];d eﬁng(f, x)dx exists for all £ € X.

Proof. For any compact set K C R, 3C, x > 0, [09g(¢,7)| < Co(1+|2]?)P/? < Cy k¢,
Vo € K and V€ € X. Since |m|(X) < oo, by the theorem of dominated convergence, it
follows 9°G(z) = [ 0%g(&, x)dm(€), i.e.

107G ()] < /Xlai‘g(f,w)ldlml(é) < [lml| Ca (1+]af?)77?

Thus, by Lemma 9, G is Fresnel integrable. Choose x1 € C5°(R9), xo € C*°(R?) as in
the proof of Lemma 9, such that

I(h) = /Rd e 17° G(z)da = Io(h) + I (h)

where I;(h) denotes the Fresnel integral of the product Gx;, and Iy(h) is given by (3.9)
with ¢ replaced by G. The same holds for the oscillatoy integral of g(¢,-), i.e. we write

Hen)= [ ePoEads = Joe.m) + A

where J;(&, h) is the oscillatory integral of g(,-)x;, for j = 0,1, and Jo(&, h) can be
calculated by using (3.9). In order to show (3.10), we prove the equation separately for
both, Iy and I, i.e.

1;(h) = /X J5(6, 1) dm ()

for 7 = 0,1. In the case j=1, this follows from Fubini’s theorem, since I (h) and Jy (&, h)
are given by Lebesgue integrals on R¢ (due to x; € C5°), and

is m ® A\? integrable, where A\? denotes the Lebesgue measure on R?. By (3.9) and
Fubini’s theorem, which again applies due to the finiteness of |m| and the bound on
02 g(&, x) being uniform in &, it holds
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JLaemane) =3 3 [ [ eH @0 a6 pxo)e) am(e) de

k<N\a |=k

=Y Y S ) [N @ [ dlaw)dm(©) 0 o) do

kSN |ay|=k B<ay

_Z Z / ehW(Z)/\N Z (O;ak)aﬁG(x)aak*ﬂXO(x)dx

k<N |agl=k B<ar
=3 / FPONN (1) 07 (Gxo) (@) da = To(h)
k<N g |=k

where we have used the Leibniz product rule, equation (3.9), and the result from above,
which allows to differentiate G under the integral sign. O

Our following definition of Hermite polynomials is taken from [1, 4.18], whereas the
proofs of Lemma 10 and Proposition 14 are based on [1, Proposition A.1l], but were
rewritten due to many missing steps.

Lemma 10 (Hermite polynomials). For any n € N, h € R, and b1, ...,b, € R?, we
define the Hermite polynomial of order n, H,(bi,...,by|h), by

Hobr, . ball)(@) = e 210 (Dyy oDy 41 ) @)

where for any b € RY, Dy denotes the directional derivative in the direction of b, which
for any f € C*(RY) is given by (Dyf)(x) = (Vf(x),b)ga. Then for each n € N,

H2n(bla ceey b2n|h)($) = Z (_’Lh)Qn_m agll ..... ban (‘T) (311)
m=0
where |ag? . (x)] < (2n)!/((2n=2m)!m! 2™)[by| - - - |ban]| [x[** ™ for all m < n.

Proof. We will show, that for each v € R? and n € IN, Ha, (b1, ...,ban|h)(z) takes the
form (3.11), where ay; ,, (x) is a sum of (2n)!/((2n—2m)!m!2™) terms, each term
being a product of 2n — m factors, where each factor is either of the form (b;,bj)ga or
(x,bg)ga for some i,j,k € {1,...,2n}, but in each product every b; appears only once
while z appears 2n—2m times. Hence there are m factors of the form (b;, b;) and 2n—2m
of the form (z,bg). The estimate on o ;. = then follows from the Cauchy-Schwarz
inequality. Since <(V6—%|'|2)(x),b>m = —ihe %1l (2, b)ga, for any z,b € R?, we
have Hy(b1]h)(x) = —ih (x,b1), and therefore

HQ(bl, b2|h>($) = —ih <b1, b2> + (7Zh)2 <.CC, b1><SC, b2>

Hence the assertion is true in the case n = 1. By induction, assume that it is true for
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some n € IN. From 9,0 f = 0,0, f for any f € C°(R?) and j,k = 1,...,d, it follows
Dy, Dy, f = Dy, Dy, f for any by, by € RY. Thus, we have

Haognaty (b1, - bagnsny|h) = €2 °Dy, Dy, (e ( “ 2 Hy (b, -, b2n|h))
= Hy(bant1,b2ns2|h) Hap (b1, .. ban|h) + Hi(bani1|h) D, o Hon (b1, - .., b2n)
+ Hi(b2n+2|h) Doy, Hon (b1, ..., b2n|h) + Dy, Doy sy Hon (b1, - - -, b2p | )
The terms in the sum o () are of the form
(bo(1): @) -+ (bo(2n—2m), T) (Do (2n—2m+1) bo@2n—2m+2)) - ** (bo(2n—1), bo(2n))

where o is a permutation of 2n elements. Hence, for m = n, any derivative of oy’

vanishes, whereas for m < n, Vaj! , (z) consists of terms

.....

2n—2m
<ba(2n72m+1)a ba(2n72m+2)> T <ba(2n71)a ba(2n)> Z (H(ba(z) ) (E)) ba(j)
Jj=1 i#]

and therefore Dy Hay, (b1, . . ., ban|h) takes the form of (3.11), with oy, replaced by
BEY .. by, Which, for m <n is a sum of (2n)!(2n—2m)/((2n—2m)!'m!2™) terms, such
that each term contains 2n—2m—1 factors of the form (b;, x), as well as m factors of the
form (bj, bi), and one factor (b, b), where ¢,j,k,1 € {1,...,2n}, and in every term, each
b; only appears once. Moreover, g, = 0. Also, for any b, b € R%, the expres-
sion Dy DyHoy (b1, .., ban|h) takes the form of (3.11), but with af? , = replaced by
VVVVV by by Which for m < n is a sum of (2n)!(2n—2m—1)(2n—2m)/((2n—2m)!m!2™)
terms, where each term contains 2n—2m—2 factors of the form (b;,z), m factors
of the form (b;,by), one factor of the form (b;,b) and one factor (b,,b'), where

i,J, k1,7 € {1,...,2n}, and moreover 77, py = 0. It follows

yeeb2n,

n

Hogny1) (01, - bangalh) = > (=ih)*" "2 (2, bop 1) (@, ban2) Ofr

m=0
n
+ Z (7ih)2nim+1 (<:L', b2"+1> ﬂg?,---7b2n,,b2n+2 + <:C’ b2n+2> ﬂg?,---7b2n,7b2n,+1)
m=0
n n
+ Z (=ih)* ™ bant1, bang2) Ofr 4, + Z (—ih)*™ ™y bon o
m=0 m=0

n

m=0

—+
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Hence Hy(;,41)(b1, - . ., bans2|h) is of the form Z:T:lo(—ih)%_m” O bansas With
oy bansa = (T b2n1) (@, b2nga) Oy,
= (z,b1) - (2, ban )(2, b2n1) (2, bony2)
Oby o bonss = (@ bang 1) (@, bang2) by (2, b2011) BE o b

0 0
+ (2 02n+2) Boy ... bon banss + (b2n415D2nt2) Qb

.....

61’;717/7~~~7b2n+2 = <‘T’ b2"+1> <‘T’ b2”+2> agll7~~-,b2n + <$’ b2"+1> /Bl’;rlly_”abanbZn+2

1 -1
+ <:L', b2"+2> ﬂg?,...,b2n,b2n+1 + <b2n+1’ b2n+2> aZan»bZn

m—2

+ o, <ybanga (m>2)

An,m

terms. Also, each term consists of 2n+2—m factors, with m factors of the form (b;, b;)
and 2n+2—2m factors of the form (z,by), where 7,5,k € {1,...,2n+2} and each b;
appears only once. This shows that the assertion from the beginning of the proof is
true for n+1, under the assumption that it holds for n. By induction, the claim is true
for all n € IN. O

Proposition 14. For anyn € N, by,...,b, € R?, h € R, it holds

/2]
Hy(by, ..., balB)(x) = > (=ih)""™ g, (x) (3.12)

m=0

b (@) < nl/(n—=2m)!m!27)|by| - - - by |z|" 2™ for all m < |n/2].

vvvvv n

where |aj?
1

Proof. For n even, the assertion coincides with Lemma 10. For n=2k+1, k € IN,

H2k+1(b1, ey b2k+1|h)($) = e%‘z‘zpb2k+l (67%|'|2Hgk (bl, e ,b2k|h)) (m)

= H1 (b2k+1|h)(1') Hgk(bl, ey b2k|h)(1'> + Db2k+1H2k(b17 ey b2k|h>($)

k
= D (i) bapa) ), (@) + Y (SiR)PETTEE ()

..........

m=0 m=0

where, for m <k, B}, ., is a sum of (2k)!/(2k—2m)/((2k—2m)! m!2™) terms, such
that each term contains 2k—2m—1 factors of the form (b;, x), as well as m factors of
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the form (b;, b;), and one factor (bs,b), where 4,7,1,s € {1,...,2k}, and in every term,
each b; only appears once. We obtain

k
2k+1—
Hopyi1(b1,. .., bagy1]h) Z —ih)*F* TTVRYY e
m=0
where
0 0
Kby ,ioboryr = (z, b2k+1>04b1 ,,,,, bor (z, bl)"'<$ab2k+1>
Kb = (@ borgr) gl BT
for 1 <m < k. Hence, kg,  isasum of
(2k)! (2k)(2k—2m+2)
(2k—2m)!'m!2m (2k—2m+2)! (m—1)!12m-1
_(2kt1-2m o 2k—2m42 (2k+1)! 3 n!
B 2k+1 (2k+2—2m)(2k+1) ) (2k+1-2m)!m!2™ — (n—2m)!m!2m

terms, each term being a product of 2n+1—m factors, where each factor is either of
the form (b;,b;) or (x,b;) for some ¢,7,0 € {1,...,2k+1}, but in each product every b;
appears only once, while x appears 2k+1—2m = n—2m times. Since |n/2| = k, the
estimate follows from the Cauchy-Schwarz inequality, as in the proof of Lemma 10. O

As an application of the Fubini type theorem (Proposition 13) and the preceding
results, the next Lemma shows how to calculate oscillatory integral of functions on R¢
of the form

f(x) = ei<m7b0><x’ b1> T <'T’ bk)

where by, . .., b, € R% This result was indicated in [1, Lemma 4.4], but the proof pro-
vided there needs some more care, which is why we have slightly changed the statement
and added some crutial steps to the proof.

Lemma 11. For any by, by,...,by € R, where k € IN, x v X®0) (1 by} - - - (x,by,), is
Fresnel integrable, and it holds

/ sl P g b)) da = M e T (b, bel) (b)) (3.13)
R

el
2

where \F = (—i)¥(2mih)

Proof. Fresnel integrability already follows from Lemma 9 applied to the case V = 0.
For (3.13), choose ¢ € S(R%), such that ¢ € S*(R?), i.e. 1(0) = 1. Then ¢(ex) = .,
where ¢ (y) := e~ %) (£). Since, for any ¢ € S(R?) and b € R, Dbgo( ) = —i{x,b) p(x),
it holds

F(Dy, -+ Dy tpe) (@) = (=)@, br) -+ (2, by) dhe

where F denotes the Fourier transform on S(R?). Hence, from Lemma 1 and equation
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(2.11), it follows

/ eﬁ‘z‘zei@’b“)(z, b1) -+ (x, bg) 1/;(5z) dr = zk/ eﬁmZ]—“(ébU * Dy, - Dy, te) da
R4 R4

_ ik(27rih)d/2/ e # It l(Dy, Dy ) (2) da
R4

= (=i)*(2mih)¥/? /

Dy, -+ - Dbk(f%m|2 Ve (x—by) dx
Rd

N[ b ) @) (o) d
Let B; be the unit ball in R?, then for any g € C(RY), we have

[oenwe = [ sep@i [ e

R4\ By
where the first term converges to g(0) [ ¢ (x)dz = ¢(0), by dominated convergence, the
continuity of g, and [¢(z)dx = 1/;(0) = 1. If we assume that ¢ is at most of polynomial

growth, i.e. if |g(z)| < pn(x), for some polynomial py of order N € IN, then after a
change of variables, we obtain for the absolute value of the second term

|tttz o2 < & [ e

where M := N+d+1 and Cy := sup,cpa(1+]z))M|¢(2)] < oo, since 1 € S(R?). By
the assumption on ¢g and the choice of M, the integral on the right-hand side ex-
ists, and moreover its integrand is monotone decreasing to 0, as € — 0. Therefore, by
monotone convergence, lime o [pq g(ex)y(z) dz = 0. Using this result in the calcu-
lation above, where g(z) is given by e~ 2 [#+t0l” Hy (by, ... b|h)(2+bo), together with
Jra 9(ex)¥(x)de = [, g(x)e(x)dz, shows that

ih

/ ez |77 ei@bo) iz b1y (2 b )b (ex) de S2% A e 10 H (b, L by R) (b)
Rd
which proves the claim, since we know that the limit is independent of 1/; e S*. O

Having done most of the preparations for the proof of Theorem 4, we are left with
some minor technicalities provided by the following two Lemmas. The proofs consist of
basic calculations.

Lemma 12 (Translation Principle). If f=p € F(H), where H is real separable Hilbert
space, then for any a € H, it holds

Fh(z > f(z+a)er @) = e=arlal £h () (3.14)
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Proof. Let u® be the complex measure on H with u-density y — e*®¥ which means
that du®(y) = e““¥ du(y), then f(x+a) = i*(x). From Lemma 1 and Theorem 2, we
obtain

/eﬁllznzf(ﬁa)e%@v@d:c = / e” I d(u +6,) (w)
H

H

The claim now follows from e~ #llz+#1%¢ita2) = c=s5llal’e=%121* and another appli-
cation of Theorem 2. O

Lemma 13. If, for any k€N, we set ex(t) := 3,5, ( ;f)j, teR, then |ex(t)] < h;c—‘,k

Proof. Let us first show that for any £ € IN and z € C, we have
ex(z) = Zik/l(l—t)k_letzdt
AN RS VI

For k = 1, this just follows from fol e "dt = (e* —1)/z. Now, assume that the assertion
holds for k, then

k

Zji z k=lgtz g 2 _ ktz
Zj!*(k—l)!/(lt) dt k* /dtlt dt — )

jzk+1

k

_Z0a- [ t’“”dtl—zk+1 1= preta
= (1= [ a-nteeta-n = S [ -nte

By induction, this proves the given identity. Since fol(lft)k’ldt = —1/k, this shows

the estimate. 0

The overall strategy for the proof of Theorem 4 is taken from [1] and [29]. We have
added justifications and explicit calculations where they could have been considered

missing.

Proof of Theorem 4. From (3.5), it follows [, |lz]*d|u|(z) < 2C,/e* < 1, and
therefore, Lemma 7 implies that 3'a € H, such that DV (a) = {(a, ). For ¢¢ := || - ||, it
holds ¢o(z+h)—¢o(x)—2(z,h) = ||h||?, and therefore D¢o(x) = 2{(x,-). Thus, it holds
D¢(a) = (a,-)—DV(a) =0, i.e. ¢ admits a unique stationary point given by a.

By using the Translational Principle (Lemma 12), we can write I(h) = en®(@) [*(h),
where for g,(z) := g(x+a) we have set

I*(h) == Fh (z ef%(V(r+a)7V(a)*<rﬁa>)ga(x))
For h € R, let (I,(h))qen be a sequence of finite-dimensional oscillatory Fresnel integrals

(
such that I*(h) = limg_o0 I4(h), and I, (h) = .F?}}[q (e” thHqga‘,H ), where W is given
by W(z) := V,(z)—V(a)—(a, z), Vo(zr) := V(x+a). From integration by parts,
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1 1 k
42/0 (1—t)eStdt = 4/0 (-t Tectar = ¢ —¢—1 = ;;%
for any ¢ € R. Since V,(z)—V(a) = [(e!®¥) —1)du®(y), it follows
z)—V(a) = iz, a))? 1—ei< o)t o,x
Vala)-V(a) /<<,>>/0<1t> dtd(0) +i [ (o2} ()

From Proposition 10, DV (z) =i [{« , and therefore, DV (a) = (a, -) implies

_ /H /01(1—1&) (z,a)? ") dt dp® ()

For fixed ¢ € N, as in the proof of Theorem 2, there exist ug,vq € M(R?),
d := dim(H,), such that V|4, o fy];l = fiqg and gq |3, o*ng1 = U4, where yg : Hq — R
is an arbitrary basis representation of H, in R¢. In particular, pg is given by the
complex image measure p* o Pg- Lo 751. Then, by definition,
o 7 2 7
I,(h) = (2m'h)*d/2/deﬁ\z\ e 7@ py(x) de =: J(h)
R

where w := Wy, o 751. We have for any y € H,

Wl ) = W(Pay) = —/H/O (1=t) (y, Pga)? " Pa)t dt dp® (o)

1
- [ [asowap et i o p; @
M, Jo
Hence, for any z € RY, w(z) = — [. fol(l—t) (z, )2 X @V dt dug(y). I h € R is fixed,

then by dominated convergence, we have J(h) = lim._,o limy_,o0 Je n, where for any
p € 8", we have set

Jen = (2mih) d/QZ Z/h /ezih|z|2w(x)kf/d(x)tp(sx)dx

The convergence in ¢ is uniform in N, which allows the limits to be interchanged. Thus,

h P2
J(h) = hm (2mh dﬂzﬁ/ ez ?l o (z) da (7)
ne=0 . R4
where @, (x) := w(z)™ U4(x), for all n € IN. From the assumptions on p, from |pu®| = |ul,
and |[ypPna| = [|[Pnall < |a|, it follows [ |z[Fd|pa|(z) < [|laf*d|p|(a) < co, VK € N.
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Thus, we are allowed to apply Fubini’s theorem in
-1) / / / / (1—t1) - (I=tn)(z, 1) - - - (2, ) ¥
Rd Rd
iz, 01 )ty - iz, 0m ) tn - I
X e e dty dpg(an) -+ - dtn dpa(an) Da(z)

= U ) ()0 O i
% ([0,1] % n

where § = (ﬁa (tla al)a sy (tna Oén)), fn(g) = Z?:l ajty + B, Iy =1vg® ()‘[0,1] ® Md)®n
with Ajg 1) denoting the Lebesgue measure on [0,1]. If we denote R¥x ([0, 1]xR%)" by
X, then from Proposition 13 and Lemma 11 it follows

o 2
/d e ", (2) da
R

= (=" /X<1ft1>---(1ftn> /Rzeﬁ‘”‘?x,mfm<x,an>2ei<”’f"@>dxdrn<f>

— (gmh)d”/xu—tl)---(1—tn)e—%‘fn@)ﬁﬂgn(ahahAwamanm) (fa()) dIn(€)

n

Z(—ih)%‘m(mh)d”/(1—t1)---(1—tn)e‘%‘f”‘5”27£ AAAAA an (fn(€)) dTa(8)

X

m=0

where v, (fn(§)) satisfies

hgbla---@n(fn(f)” < % |O‘1|2"'|04n|2|fn(§)|2"72m (i)

Due to (i), we can write J(h) = > 7 Jn(h), with

Tty i= > EL cimm [ aen) o) e EH O L (1©)dr
m=0 X

From |e=®—1| < |z| for any = € R, which we have shown earlier, and
1)
70 = V% [ 1mt) - (1432, () A0

it follows

() =J(0)] < & Z|h|" " [ aet) 0t 2, (O AL

DI | <1—t1>---<1—tn>@ A (D] I (€)

" m=0

_ /X (a-tr) - () O 0 @] dinalce)

n!
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If we define
Wn,N = /X(l_tl) e (1_tn) |041|2 e |O‘n|2 |fn(€)|N lenl(f)

then for |h| < 1, (#) implies

1 wn 2n+2
(0=, 0) < [n] (£ 22222 Z -

)l
* Zm 2k—2)! n+1 k)l gn—k+z “n.2k

For w,, v, from fol(l—t)tkdt = (ki—m, and Fubini’s theorem, we obtain

ann = 30 N [ At P ()8 o P )
e]N'n+1
7=
N'(0+2)! 2471 2470 | 170 ®n
= o " d ) )ttt n
- X S o B R A BSOS
Iv\ N

@5 N!(y0+2)! 70! (11+2)!--- (3 +2)! N!
n _ n
< G0 Z l(7+2)! g7 g2+ ... g2 2N ¢, C, Z 1

[v|=N [v|=N
(N+n)!
- g2n+Npl CV CE
Hence
n
(3n42)! (n+2k)!
n(B)=Ju(0)] < B] C,Cp (2 o 2 T e

=3 (i)

n
n)! (n+2k)!
+I; 2k—2)! n+1 k)l 2n—k+2 62(”+’€)n'n')

Next, for any x € H, let us write
) La .
Va)-Via) = [ (@ - ndutia) = [ [ St drdpea)
M nJo dt

1
= z/ / (z,a) e dt du (o)
H JO

As above, we obtain for any = € R¢

1
= / / (2, )@V dt dpaly) — (2,5)
R4 JO
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where b := vg(P,a). Then, if Y; := R¥x ([0, 1]xR%)*, by Fubini’s theorem

Z() )™ [ o) (o D arig

where Iy == vg ® (Ajo,1] ® pa)®*, ¢ = (B, (t1,a1), ..., (tr,ax)). From Lemma 11 and
Proposition 13, it follows

/ eﬁlzlzgon(x) dx

R4

= kZ:O (:)(’L)k(_l)"—k /Yk /R: e%\x@(x?aﬁ L <l’,ock> <x7b>n—k 6i<x,fk(<)) dl’dl_'k(g)

(0) 2min)"?(=1)" " / e FIROP H (. ans by R (fe(Q) dT(C)
Y

B n 2
= @min)2 Y (=" /Y e 2RO N (ih) ™ il (5(0) T(C)
where
!
Mo on b b (O] < (n_%?wmﬂ"'|04k||b|n7k|fk(C)|n72m (iv)
Therefore
Lo JLn/2|
Tah) = =3 () (-1 / FUROP S Gpymgm o (F(O) AT
0 Yy m=0
& (=D*@/m)™ LI (O pm
= ) W) g dr’
33 G [ e O ) (O
ln/2]

= Z ZZ k' Z}:Qll:n/ |f |2l77041, LOg,by. b (fk(g))d[’k(C)
n/2) n A
> i | enia (UAOR) 72 s A AT

m=0 k=0

Thus, for neIN, m<|n/2], s<m, there are constants by, s € C such that

[n/2] m n n (/2] |h|m+1 |b|n7k
Jn(h) — bnm.sh™ %] < On
(h) . Zfo oy D (k) 2 22m+1 (n—2m) U m! (m+1)! "
m=0 s= k=0 m=0
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where we have used (iv), and we have set

Oop — /Y (O 20| - o] I T|(€)

n+2)! :
< X Bl B AT
761Nk+1 k
Iyl=n’t2
n+2)!(vo+1
S =il O T R (ZE A [CTS
E]I\Ik+l V¢ X 3
Iyl=n’t2

(y+1)! emtl etl g% VI ent2+4k
[v[=n+2 [v|=n+2

_ k (n42+k)!
= GOy rnres

Hence, together with
Cu
bl <llall < | llzlldlpl(x) < —
H E

we find that for n € IN, r < |n/2], there are constants ¢, , € C, such that for |h| < 1,

n/2]

Jn(h) = > enrh™"
r=0

n n_ Ln/2]
C, (Cu n! (n+2+k)!
< Il ?(?2) > 22m+1 (n—2m)! m! (m+1)! k! k! (n—k)!

k=0 m=0

Comparing with (4ii), we obtain that ¢, , =0 for all r =1,...,|n/2|, nelN, ie.

n n [n/2] _
c, (C (n+2+k)! n—2m
Jn(h) — cn ‘ < |h 22 (22 n
(h) = eno| < 1Ml 53 (252) 2 R (n—k)! mz::O (n—2m)!m! (m+1)!

From (2;”) < 22™ it follows

[n/2] nlo—2m [n/2]

n! " In n
2 G mm e oni S mz::O T E T S 2 (k:) =2

(n-i-z—i-k:) _ kz":_o (n—li—Q) (k Ii z)

Moreover, by [30, 3a]
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Therefore,
> ety = 5o (1) e = e () ()
SRS () () () < 2 ()5 ()

Thus, for all n € N and h € R with || < 1, we obtain

" | |
C (12 C_;> (n+2)! ] 20, (n+2)!
€

Jn(h) — cno| < |h|25—2 = 7

n!

where v := 12 % < 1, by assumption. If for each NeN, set Sy(h) := S°N_ J,(h) and

n=0“"n

N = Zgzo Cn,0, then from v < 1 it follows

N
> (m+2)(n+1)y" < |kl

n=0

20,
22

(1-7°

20,
[Sw(h) —en| < 1=

Since J(h)=1I,(h)=limn_ o Sn(h), it follows from Lemma 8, that (Sy(0))nen is
convergent, and moreover, that

[I,(h) = I,(0)| < C1h|

for all h € R with [h|<1, where C := 252 (1-12 %) ™>>0, and I,(0) := limy 00 S (0).
Since C' does not depend on d or ¢, we may use Lemma 8 again, in order to obtain

I'(h) = I (0)] < Cl| (v)

where I*(0) := lim; o0 I4(0). From above and the proof of Lemma 10,

Ju(0) = /X () o (At 32 (£(€)) AT (€)

n! fy 7 T ey

—1)"54(0 N
= (n,)ni,;f) Z/(]Rd) (A1), Uo(2)) *  (Qo(2n—1) Co(an)) dus (a1, ... )
oceS "

where S denotes the set of all permutations of (1,1, ..., n,n), which consists of (2n)! 27"
elements. Moreover, if we denote D?V (a) by T, considered as a map from H to H by
using Riesz representation theorem, i.e. for any x,y € H,

(x,Ty) = — /H (. ) (@, ) dp ()
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from Proposition 11. Since pg = M%’Pq_lovgl, it follows for all z,y € R,

- / (2, @) (e, ) dpale) = (. Tyy)
R4

where T}, := 'yEPqTPq'yEl. Hence, for any n € IN, and z,y € R,
(x,T]y) = (—1)"/( ., (,01) (a1, a2) -+ (1, an) (o, y) du§"™ (a1, ..., an)
R n

And, therefore the trace of T, is given by
d
Z(ej,Tq”eJ) = (—1)"/ (a1, q0) -+ (a1, ap) oy, an) du§™ (oa, ... an)  (vi)
B

Jj=1

where {e;}9_, is any ONB in R?. Thus, it follows

(7)) < ( /}R aldal(@)” < ( /H lol2diul(@) " < (£> <1

since by assumption 12C,, < £®. Hence, the series >, tr(T")/n converges absolutely
and, e.g. from [15, Theorem 3.3], we obtain

det (I-T,) = exp (- nil tr(:‘? ))

where I denotes the d-dimensional identity matrix, and therefore
1 1 < tr(T; )
det(Iqu) 2 = exp (5 ZT
n=0

where the last equality follows from (vi) by using the combinatorial result [29, 3.28].

n=1

71 n ”
,)Qn Z / (Ao (1) Qo(2)) ** (C(2n—1)s Qor(2m)) dpg ™ (a1, -, o)
T4 ses BT

(
nln

Hence, we have found

o0

1,(0) = 3 7,(0) = det(I-T,) " #g(a) (vii)

n=0

Next, since the determinant of finite-rank operators can be calculated by means of their

basis representation, i.e.
det (ﬂ—’yEqu'yE) = det(I-Ty)

let us show that vngqu = P,TP, converges in trace norm to 7 = D?V(a), so that
by Definition 7, Det(1—D?V (a)) is obtained as the limit of det(1—P,TP,), as ¢ — oo.
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For any two orthonormal bases {e,}nen, {fn}tnen in H, from monotone convergence,
the Cauchy-Schwarz inequality in {2 and Parseval’s identity, it follows

‘Z en, (PyD2V (a)P, — D2V (a)) f.)

nelN

< ZA’(en,an)(’an,fn)—(en,a)(a,fn>‘d|u|(a)
/H ; [{en, Paa)(Poa—a, fn)| d|pil(e) +/ Z (@, ) (ens Por — @)| dlul(a)
/(DW% ) (Zlfnﬂa ) Q)dea)

+/ ZI fr )" (Z|<en,7>qa o))" dlul(a)

- /Hall [Paa—al dil(@) == 0

/N

/N

by dominated convergence, and P, converging strongly to the identity. Since the conver-
gence is uniform in {ey, },, and {f }, from (3.4), we obtain that P,D?V (a)P, converges
to D?V (a) in trace norm. Hence (v) together with (vii) prove the claim. O

3.2 Application to the Feynman-Fresnel path integral

In this section, we apply the stationary phase approximation of Theorem 4 to the path
integral solution for the Schrodinger equation found in Theorem 3, in order to find an
approximation of such solutions in the semiclassical regime.

In the semiclassical theory of quantum mechanics, one considers the data of the
system to live on a much larger scale than the quantum wavelength. This can be
described by introducing a small parameter h > 0, and rescaling the potential V' and
the initial datum ¢ by V(z) := V(ha) and @(x) := @(hx). Passing from microscopic
(x,t) to macroscopic coordinates (hx, ht) =: (§,7), then Schrodinger’s equation (2.30)
reads

_dyph
h T
! dr

where ¥ (€) = 7/’%(%)7 and 1), denotes a solution to (2.30) with potential V and
initial datum ¢. The following simple result shows how this rescaling applies to Fresnel

2
- *%Aﬂ/’f FVh (3.15)

integrals.

Lemma 14 (Scaling property). For some t>0 and h>0, let f=py € F(H:), and let
fn denote the function on He, given by frn(z) := f(s — hz(%)), then it holds

(fn) = F1(f)

L
h
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Proof. First, let S, denote the scaling from H; to # +, given by Si(z) = (s = z(hs)),
then we observe that

t/h

<s»—>hx(%),y>t = /Otx(%)y(s) ds = /0 @(s) hy(hs)ds = (x,Sny)i/n

and so fp(x fH e (®:Sny)e/n duy(y) is the Fourier transform of the complex image
measure [ty o Sh , evaluated at = € /H%. Therefore, from Theorem 2,

Folfu) = / T dufoggl(x):/ e~ 31502l gy ()
Hi/n

He

Now, a simple calculation shows that [|Sy,(2)||7/, = h||z[|f. Hence, another application
of Theorem 2 gives

/ e 188l gy (2) = / e 1el? £ (2)dz
He

Hi

which, by definition of 7/, proves the desired result, Fe(fn) = FIf). O

This shows, how 1/17]} can be constructed, if the conditions of Theorem 3 are satisfied,
and moreover, that we can use Theorem 4 to obtain a semiclassical approximation of its
FFPI representation. The statement of Theorem 5 and its proof are a direct application
of Theorem 4, similar to [2, Theorem 3.7].

As was the case with Theorem 3, we have to impose quite strong conditions on
the potential and the initial data. In particular, we not only need that they are in
the Fresnel class .7 (R¢), but moreover, assumptions (3.16) require that all moments of
their underlying measures have to exist, which (similar to Proposition 11) implies that
V and ¢ have to be in C*°(R%), with bounded derivatives of all orders.

Theorem 5 (Stationary phase approximation of FFPIs). Let V=f and p=0 belong to
F(R%), such that there are constants Cu,Cy e >0, with

_ 1] . i
[ sban@) < ¢.f . [ pbavie) < . (3.16)
R el RY el
for all j € N, then the assumptions of Theorem 8 are fullfilled, and therefore
e = Fi(wr T HIVEHOE o0 4 ) (3.17)
forms a solution to the Schridinger equation (3.15). If we further assume 12tC, <eZ,
where Et —t" 3¢, then for each € € RY, the phase function ¢, given by ¢ (z) = |7 -
fo s)+€) ds, admits a unique stationary path az € Hy, and for |h|<1, it holds
() = Det(D*®¢(ag)) ™ e# " p(a (0)+€) + R(h) (3.18)

where R(h) — 0, as h — 0.
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Proof. From Proposition 11, and (3.16), it follows 9% f(x) = il Jra ¥ e ™) dp s (y),
for all @ € N with |a| < 2, where f € {V, ¢}, and so the assumptions of Theorem
3 are satisfied. If we denote the argument of the Fresnel integral (3.17) by u, i.e.
V(&) = Fl(u), as well as up(z) := u(s — hx()), then a simple change of variables
yields

_ 4 x(s s —1i t/hy x(s s~
up(z) = e F I VIl/MFOds (g (0)+¢) = et o VMG (5(0) ¢ /)

where V(z) := V(hz) and @(z) := p(hx). Hence, from the scaling property (Lemma
14), it follows ¥ (¢) = 1/1% (%), where 1y denotes the FFPI defined in Theorem 3, forming
a solution to the Schrodinger equation (2.30) with potential V and initial datum ¢.
Thus, by Theorem 3 and the discussion around equation (3.15), ¥ forms a solution to
(3.15). Next, if vp, p+ denote the complex measures in % (H:) with 0y(z) = p(2(0)+¢)
and fi; = fot V(z(s)+€)ds, and (v))4, C H,; are the paths defined in the proof of
Proposition 4 satisfying (z,v%): = z;(s), then from the construction in Lemma 5 and
the proof of Proposition 4,

[ teanoie) = [ |

due to [|77]|: = t'/?, and also

| et = | .

(/241 41

, !
= = v dlul(v) < tC - = C '
T o PAe) < O = G

d
Zvﬂé
i=1

j , 4 1
Al < 07 [ ppdple) < ¢,
t R4

d
Zvﬂi

=1

dplwds < [ =5y [ o)

Therefore, the assumptions of Theorem 4 are fullfilled, i.e. there for each ¢ € R?, there
exists a unique stationary point ag of @¢, and (3.18) follows from (3.6). O

As we can see from Theorem 5, as h — 0, the main contribution to the Feynman-
Fresnel path integral ¢ (£) comes from the stationary path ag, in the sense that, at
lowest order in h, the information carried by /(£) is determined only by a¢. In order
to find out more on ag, let us first calculate the Fréchet derivative of ®¢.

Proposition 15. For any & € RY, the Fréchet derivative of the phase function D,
defined on H; by Pe(x) = %Hx”f—fg V(z(s)+&)ds, is given by

t
(D2@) W) = ()~ [ o) TV (als)+€) ds (3.19)
0
for all y € H,.
Proof. The Fréchet derivative of z + ||z||? is 2(x, -);, as is true on any Hilbert space.

For U(z) := fot Ve (2(s))ds, where for any a € R%, Ve(a) := V(a+€), by Taylor’s theorem

we may write
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3 THE METHOD OF STATIONARY PHASE

Ve(z(s)+h(s)) = Ve(x(s)) + h(s)-VVe(z(s)) + R(x(s), h(s))

where |R(xz(s), h(s))| < C|h(s)|?, for all z,h € Hy, s € [0,t]. Therefore

U(Hh)*U(x)*/O h(s)-VVe(x(s)) ds </O |R(z(s), h(s))|ds < Chl3

Since h € H*(]0,1]), we have for any a,b € [0,1],
b b
/ h(s)h'(s)ds = h(b)* — h(a)* — / R (s)h(s)ds

from integration by parts on H'. Hence |h(a)|? < |h(b)]? + 2 fab |h(s)| | (s)| ds, and by
Cauchy-Schwarz, fab |h|[A| < ||hl|2||h]l¢ In particular, for b=t, due to h(t)=0, we find

t
1113 :/ h(s)|?ds < t sup |h(s)]* < 2t]h]2]| Rl
0 s€[0,t]

So for h # 0, ||h|l2 < 2t |||+, which proves the claim. O

Having achieved an explicit expression for D&, we easily obtain the following prop-
erty of the stationary paths a¢, which was already proven in [2, Lemma 3.3].

Proposition 16 (Newton’s equation). Under the assumptions of Theorem 5, the
unique stationary path ag of ¢ is in H(0,t; R?), and the path given by v(s) := ag(s)+£
satisfies the following boundary value problem

Y(s) = =VV(y(s))
{ Y(t) =&, 4(0) =0 (3.20)

Proof. From Proposition 15 and D®¢(ag)=0, it follows for any w € C§°((0,t), R%),
(%, w)e = (VVoy,w)s. Thus 4 has the weak derivative —VVovy, and due to C:=||VV]||«
being finite, we obtain ||§]|2 < C't. Hence ¥ € L?(0,t), and % = —VVoy. Moreover,
from integration by parts in H!, it follows for any h € H;, with h(0) # 0,

7(0)h(0)

Jht) — / 5(5)h(s) ds — / 5(s)h(s) ds

y(t
/O YV (1(s))h(s) ds—/o 4()h(s)ds = 0

where we have used (D®¢(a¢))(h) = 0 and Proposition 15. Hence « satisfies (3.20) O

Hence, Theorem 5 and Proposition 16 show, that at lowest order in h, 9:(£) is deter-
mined by the classical path v = a¢g+¢, with v(¢) = ¢ and 4(0) = 0.
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Let us add the remark, that one can also find an explicit form for the Fredholm
determinant Det(D?®(a)) from equation (3.18). In [2, Lemma 3.6], it is shown that it
can be written as the Jacobian determinant of the map & — a.

Without going further into the details of semi-classical analysis, let us refer to
[26], where the assertion of Theorem 5 is obtained from a completely different ap-
proach, which is connected with pseudo-differential calculus and Lagrangian analysis
(see [26, Theorem 12.5]). Furthermore, there it is shown, how from (3.18) it can be
rigorously derived, that the semi-classical wave function of a quantum mechanical par-
ticle is concentrated near its classical trajectory, a well-known fact, which is sometimes
formulated as: The semiclassical limit of quantum mechanics is given by classical me-

chanics.

3.3 Concluding remark

In this thesis, we have studied one of the available rigorous approaches to the Feyn-
man path integral in form of solutions to the non-relativistic Schrédinger equation. We
have seen, how the oscillatory nature of path integrals can be used to find a semiclas-
sical approximation of quantum mechanical wave functions my means of a stationary
phase approximation. The overall restriction was the limited applicability to physi-
cally interesting cases of potentials, due to the condition that the potentials have to be
Fourier transforms of complex measures and moreover need to satisfy certain regularity
assumptions.

This is probably the reason, why this approach to Feynman path integrals wasn’t
able to get more attention in all the years since it was introduced by Albeverio and
Hoegh-Krohn in [3]. Even though the availability of a stationary phase approximation
gives a certain amount of practical potential, the theory misses non-trivial physical
applications.

The whole topic of finding mathematically rigorous formulations of Feynman path
integrals has one big problem: It never evolved from the stage of theory construction
to a stage focussed on solving problems.
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